Mercurial > hg > octave-nkf
diff liboctave/oct-fftw.cc @ 4773:ccfbd6047a54
[project @ 2004-02-16 19:02:32 by jwe]
author | jwe |
---|---|
date | Mon, 16 Feb 2004 19:02:33 +0000 |
parents | 24bf1bcbba8a |
children | 0ff45249d321 |
line wrap: on
line diff
--- a/liboctave/oct-fftw.cc +++ b/liboctave/oct-fftw.cc @@ -22,18 +22,26 @@ #include <config.h> #endif -#ifdef HAVE_FFTW +#if defined (HAVE_FFTW3) #include "oct-fftw.h" #include "lo-error.h" - +#include <iostream> // Helper class to create and cache fftw plans for both 1d and 2d. This // implementation uses FFTW_ESTIMATE to create the plans, which in theory -// is suboptimal, but provides quite reasonable performance. Future -// enhancement will be to add a dynamically loadable interface ("fftw") -// to manipulate fftw wisdom so that users may choose the appropriate -// planner. +// is suboptimal, but provides quite reasonable performance. + +// Also note that if FFTW_ESTIMATE is not used the planner in FFTW3 +// destroys the input and output arrays. So with the form of the +// current code we definitely want FFTW_ESTIMATE!! However, we use +// any wsidom that is available, either in a FFTW3 system wide file +// or as supplied by the user. + +// XXX FIXME XXX If we can ensure 16 byte alignment in Array<T> (<T> *data) +// the FFTW3 can use SIMD instructions for further acceleration. + +// Note that it is profitable to store the FFTW3 plans, for small ffts class octave_fftw_planner @@ -41,17 +49,35 @@ public: octave_fftw_planner (); - fftw_plan create_plan (fftw_direction, size_t); - fftwnd_plan create_plan2d (fftw_direction, size_t, size_t); + fftw_plan create_plan (int dir, const int rank, const dim_vector dims, + int howmany, int stride, int dist, + const Complex *in, Complex *out); + fftw_plan create_plan (const int rank, const dim_vector dims, + int howmany, int stride, int dist, + const double *in, Complex *out); private: int plan_flags; + // Plan for fft and ifft of complex values fftw_plan plan[2]; - fftwnd_plan plan2d[2]; + int d[2]; // dist + int s[2]; // stride + int r[2]; // rank + int h[2]; // howmany + dim_vector n[2]; // dims + char ialign[2]; + char oalign[2]; - size_t n[2]; - size_t n2d[2][2]; + // Plan for fft of real values + fftw_plan rplan; + int rd; // dist + int rs; // stride + int rr; // rank + int rh; // howmany + dim_vector rn; // dims + char rialign; + char roalign; }; octave_fftw_planner::octave_fftw_planner () @@ -59,31 +85,67 @@ plan_flags = FFTW_ESTIMATE; plan[0] = plan[1] = 0; - plan2d[0] = plan2d[1] = 0; - - n[0] = n[1] = 0; - n2d[0][0] = n2d[0][1] = n2d[1][0] = n2d[1][1] = 0; + d[0] = d[1] = s[0] = s[1] = r[0] = r[1] = h[0] = h[1] = 0; + ialign[0] = ialign[1] = oalign[0] = oalign[1] = 0; + n[0] = n[1] = dim_vector(); + + rplan = 0; + rd = rs = rr = rh = 0; + rialign = roalign = 0; + rn = dim_vector (); + + // If we have a system wide wisdom file, import it + fftw_import_system_wisdom ( ); } fftw_plan -octave_fftw_planner::create_plan (fftw_direction dir, size_t npts) +octave_fftw_planner::create_plan (int dir, const int rank, + const dim_vector dims, int howmany, + int stride, int dist, + const Complex *in, Complex *out) { - size_t which = (dir == FFTW_FORWARD) ? 0 : 1; + int which = (dir == FFTW_FORWARD) ? 0 : 1; fftw_plan *cur_plan_p = &plan[which]; bool create_new_plan = false; + char in_align = ((int) in) & 0xF; + char out_align = ((int) out) & 0xF; - if (plan[which] == 0 || n[which] != npts) - { - create_new_plan = true; - n[which] = npts; - } + if (plan[which] == 0 || d[which] != dist || s[which] != stride || + r[which] != rank || h[which] != howmany || + ialign[which] != in_align || oalign[which] != out_align) + create_new_plan = true; + else + // We still might not have the same shape of array + for (int i = 0; i < rank; i++) + if (dims(i) != n[which](i)) + { + create_new_plan = true; + break; + } if (create_new_plan) { + d[which] = dist; + s[which] = stride; + r[which] = rank; + h[which] = howmany; + ialign[which] = in_align; + oalign[which] = out_align; + n[which] = dims; + if (*cur_plan_p) fftw_destroy_plan (*cur_plan_p); - *cur_plan_p = fftw_create_plan (npts, dir, plan_flags); + // Note reversal of dimensions for column major storage in FFTW + OCTAVE_LOCAL_BUFFER (int, tmp, rank); + for (int i = 0, j = rank-1; i < rank; i++, j--) + tmp[i] = dims(j); + + *cur_plan_p = + fftw_plan_many_dft (rank, tmp, howmany, + reinterpret_cast<fftw_complex *> (const_cast<Complex *> (in)), + NULL, stride, dist, reinterpret_cast<fftw_complex *> (out), + NULL, stride, dist, dir, plan_flags); if (*cur_plan_p == 0) (*current_liboctave_error_handler) ("Error creating fftw plan"); @@ -92,32 +154,55 @@ return *cur_plan_p; } -fftwnd_plan -octave_fftw_planner::create_plan2d (fftw_direction dir, - size_t nrows, size_t ncols) +fftw_plan +octave_fftw_planner::create_plan (const int rank, const dim_vector dims, + int howmany, int stride, int dist, + const double *in, Complex *out) { - size_t which = (dir == FFTW_FORWARD) ? 0 : 1; - fftwnd_plan *cur_plan_p = &plan2d[which]; + fftw_plan *cur_plan_p = &rplan; bool create_new_plan = false; + char in_align = ((int) in) & 0xF; + char out_align = ((int) out) & 0xF; - if (plan2d[which] == 0 || n2d[which][0] != nrows || n2d[which][1] != ncols) - { - create_new_plan = true; - - n2d[which][0] = nrows; - n2d[which][1] = ncols; - } + if (rplan == 0 || rd != dist || rs != stride || + rr != rank || rh != howmany || + rialign != in_align || roalign != out_align) + create_new_plan = true; + else + // We still might not have the same shape of array + for (int i = 0; i < rank; i++) + if (dims(i) != rn(i)) + { + create_new_plan = true; + break; + } if (create_new_plan) { + rd = dist; + rs = stride; + rr = rank; + rh = howmany; + rialign = in_align; + roalign = out_align; + rn = dims; + if (*cur_plan_p) - fftwnd_destroy_plan (*cur_plan_p); + fftw_destroy_plan (*cur_plan_p); - *cur_plan_p = fftw2d_create_plan (nrows, ncols, dir, - plan_flags | FFTW_IN_PLACE); + // Note reversal of dimensions for column major storage in FFTW + OCTAVE_LOCAL_BUFFER (int, tmp, rank); + for (int i = 0, j = rank-1; i < rank; i++, j--) + tmp[i] = dims(j); + + *cur_plan_p = + fftw_plan_many_dft_r2c (rank, tmp, howmany, + (const_cast<double *> (in)), + NULL, stride, dist, reinterpret_cast<fftw_complex *> (out), + NULL, stride, dist, plan_flags); if (*cur_plan_p == 0) - (*current_liboctave_error_handler) ("Error creating 2d fftw plan"); + (*current_liboctave_error_handler) ("Error creating fftw plan"); } return *cur_plan_p; @@ -125,51 +210,184 @@ static octave_fftw_planner fftw_planner; -int -octave_fftw::fft (const Complex *in, Complex *out, size_t npts) +static inline void convert_packcomplex_1d (Complex *out, size_t nr, + size_t nc, int stride, int dist) +{ + // Fill in the missing data + for (size_t i = 0; i < nr; i++) + for (size_t j = nc/2+1; j < nc; j++) + out[j*stride + i*dist] = conj(out[(nc - j)*stride + i*dist]); +} + +static inline void convert_packcomplex_Nd (Complex *out, + const dim_vector &dv) { - fftw_one (fftw_planner.create_plan (FFTW_FORWARD, npts), - reinterpret_cast<fftw_complex *> (const_cast<Complex *> (in)), - reinterpret_cast<fftw_complex *> (out)); + size_t nc = dv(0); + size_t nr = dv(1); + size_t np = (dv.length() > 2 ? dv.numel () / nc / nr : 1); + size_t nrp = nr * np; + Complex *ptr1, *ptr2; + + // Create space for the missing elements + for (size_t i = 0; i < nrp; i++) + { + ptr1 = out + i * (nc/2 + 1) + nrp*((nc-1)/2); + ptr2 = out + i * nc; + for (size_t j = 0; j < nc/2+1; j++) + *ptr2++ = *ptr1++; + } + + // Fill in the missing data for the rank = 2 case directly for speed + for (size_t i = 0; i < np; i++) + { + for (size_t j = 1; j < nr; j++) + for (size_t k = nc/2+1; k < nc; k++) + out[k + (j + i*nr)*nc] = conj(out[nc - k + ((i+1)*nr - j)*nc]); + + for (size_t j = nc/2+1; j < nc; j++) + out[j + i*nr*nc] = conj(out[(i*nr+1)*nc - j]); + } + + // Now do the permutations needed for rank > 2 cases + size_t jstart = dv(0) * dv(1); + size_t kstep = dv(0); + size_t nel = dv.numel (); + for (int inner = 2; inner < dv.length(); inner++) + { + size_t jmax = jstart * dv(inner); + for (size_t i = 0; i < nel; i+=jmax) + for (size_t j = jstart, jj = jmax-jstart; j < jj; + j+=jstart, jj-=jstart) + for (size_t k = 0; k < jstart; k+= kstep) + for (size_t l = nc/2+1; l < nc; l++) + { + Complex tmp = out[i+ j + k + l]; + out[i + j + k + l] = out[i + jj + k + l]; + out[i + jj + k + l] = tmp; + } + jstart = jmax; + } +} + +int +octave_fftw::fft (const double *in, Complex *out, size_t npts, + size_t nsamples, int stride, int dist) +{ + dist = (dist < 0 ? npts : dist); + + dim_vector dv (npts); + fftw_plan plan = fftw_planner.create_plan (1, dv, nsamples, stride, dist, + in, out); + + fftw_execute_dft_r2c (plan, (const_cast<double *>(in)), + reinterpret_cast<fftw_complex *> (out)); + + // Need to create other half of the transform + convert_packcomplex_1d (out, nsamples, npts, stride, dist); return 0; } int -octave_fftw::ifft (const Complex *in, Complex *out, size_t npts) +octave_fftw::fft (const Complex *in, Complex *out, size_t npts, + size_t nsamples, int stride, int dist) { - fftw_one (fftw_planner.create_plan (FFTW_BACKWARD, npts), - reinterpret_cast<fftw_complex *> (const_cast<Complex *> (in)), - reinterpret_cast<fftw_complex *> (out)); + dist = (dist < 0 ? npts : dist); + + dim_vector dv (npts); + fftw_plan plan = fftw_planner.create_plan (FFTW_FORWARD, 1, dv, nsamples, + stride, dist, in, out); + + fftw_execute_dft (plan, + reinterpret_cast<fftw_complex *> (const_cast<Complex *>(in)), + reinterpret_cast<fftw_complex *> (out)); + + return 0; +} + +int +octave_fftw::ifft (const Complex *in, Complex *out, size_t npts, + size_t nsamples, int stride, int dist) +{ + dist = (dist < 0 ? npts : dist); + + dim_vector dv (npts); + fftw_plan plan = fftw_planner.create_plan (FFTW_BACKWARD, 1, dv, nsamples, + stride, dist, in, out); + + fftw_execute_dft (plan, + reinterpret_cast<fftw_complex *> (const_cast<Complex *>(in)), + reinterpret_cast<fftw_complex *> (out)); const Complex scale = npts; - for (size_t i = 0; i < npts; i++) - out[i] /= scale; + for (size_t j = 0; j < nsamples; j++) + for (size_t i = 0; i < npts; i++) + out[i*stride + j*dist] /= scale; return 0; } int -octave_fftw::fft2d (Complex *inout, size_t nr, size_t nc) +octave_fftw::fftNd (const double *in, Complex *out, const int rank, + const dim_vector &dv) { - fftwnd_one (fftw_planner.create_plan2d (FFTW_FORWARD, nr, nc), - reinterpret_cast<fftw_complex *> (inout), - 0); + int dist = 1; + for (int i = 0; i < rank; i++) + dist *= dv(i); + + // Fool with the position of the start of the output matrix, so that + // creating other half of the matrix won't cause cache problems + int offset = (dv.numel () / dv(0)) * ((dv(0) - 1) / 2); + + fftw_plan plan = fftw_planner.create_plan (rank, dv, 1, 1, dist, + in, out + offset); + + fftw_execute_dft_r2c (plan, (const_cast<double *>(in)), + reinterpret_cast<fftw_complex *> (out+ offset)); + + // Need to create other half of the transform + convert_packcomplex_Nd (out, dv); return 0; } int -octave_fftw::ifft2d (Complex *inout, size_t nr, size_t nc) +octave_fftw::fftNd (const Complex *in, Complex *out, const int rank, + const dim_vector &dv) { - fftwnd_one (fftw_planner.create_plan2d (FFTW_BACKWARD, nr, nc), - reinterpret_cast<fftw_complex *> (inout), - 0); + int dist = 1; + for (int i = 0; i < rank; i++) + dist *= dv(i); + + fftw_plan plan = fftw_planner.create_plan (FFTW_FORWARD, rank, dv, 1, 1, + dist, in, out); + + fftw_execute_dft (plan, + reinterpret_cast<fftw_complex *> (const_cast<Complex *>(in)), + reinterpret_cast<fftw_complex *> (out)); + + return 0; +} - const size_t npts = nr * nc; +int +octave_fftw::ifftNd (const Complex *in, Complex *out, const int rank, + const dim_vector &dv) +{ + int dist = 1; + for (int i = 0; i < rank; i++) + dist *= dv(i); + + fftw_plan plan = fftw_planner.create_plan (FFTW_BACKWARD, rank, dv, 1, 1, + dist, in, out); + + fftw_execute_dft (plan, + reinterpret_cast<fftw_complex *> (const_cast<Complex *>(in)), + reinterpret_cast<fftw_complex *> (out)); + + const size_t npts = dv.numel (); const Complex scale = npts; for (size_t i = 0; i < npts; i++) - inout[i] /= scale; + out[i] /= scale; return 0; }