diff scripts/control/base/tzero.m @ 3432:e39d90787668

[project @ 2000-01-14 04:22:59 by jwe]
author jwe
date Fri, 14 Jan 2000 04:28:06 +0000
parents
children 2e06c3941943
line wrap: on
line diff
new file mode 100644
--- /dev/null
+++ b/scripts/control/base/tzero.m
@@ -0,0 +1,125 @@
+## Copyright (C) 1996 Auburn University.  All rights reserved.
+##
+## This file is part of Octave.
+##
+## Octave is free software; you can redistribute it and/or modify it
+## under the terms of the GNU General Public License as published by the
+## Free Software Foundation; either version 2, or (at your option) any
+## later version.
+##
+## Octave is distributed in the hope that it will be useful, but WITHOUT
+## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+## FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+## for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with Octave; see the file COPYING.  If not, write to the Free
+## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
+
+##  -*- texinfo -*-
+## @deftypefn {Function File} {} tzero (@var{a}, @var{b}, @var{c}, @var{d}@{, @var{opt}@})
+## @deftypefnx {Function File} {} tzero (@var{sys}@{,@var{opt}@})
+## Compute transmission zeros of a continuous
+## @example
+## .
+## x = Ax + Bu
+## y = Cx + Du
+## @end example
+## or discrete
+## @example
+## x(k+1) = A x(k) + B u(k)
+## y(k)   = C x(k) + D u(k)
+## @end example
+## system.
+## @strong{Outputs}
+## @table @var
+## @item zer
+##  transmission zeros of the system
+## @item gain
+## leading coefficient (pole-zero form) of SISO transfer function
+## returns gain=0 if system is multivariable
+## @end table
+## @strong{References}
+## @enumerate
+## @item Emami-Naeini and Van Dooren, Automatica, 1982.
+## @item Hodel, "Computation of Zeros with Balancing," 1992 Lin. Alg. Appl.
+## @end enumerate
+## @end deftypefn
+
+## Author: R. Bruce Tenison <btenison@eng.auburn.edu>
+## Created: July 4, 1994
+## A. S. Hodel Aug 1995: allow for MIMO and system data structures
+
+function [zer, gain] = tzero (A, B, C, D)
+
+  ## get A,B,C,D and Asys variables, regardless of initial form
+  if(nargin == 4)
+    Asys = ss2sys(A,B,C,D);
+  elseif( (nargin == 1) && (! is_struct(A)))
+    usage("[zer,gain] = tzero(A,B,C,D) or zer = tzero(Asys)");
+  elseif(nargin != 1)
+    usage("[zer,gain] = tzero(A,B,C,D) or zer = tzero(Asys)");
+  else
+    Asys = A;
+    [A,B,C,D] = sys2ss(Asys);
+  endif
+
+  Ao = Asys;                    # save for leading coefficient
+  siso = is_siso(Asys);
+  digital = is_digital(Asys);   # check if it's mixed or not
+
+  ## see if it's a gain block
+  if(isempty(A))
+    zer = [];
+    gain = D;
+    return;
+  endif
+
+  ## First, balance the system via the zero computation generalized eigenvalue
+  ## problem balancing method (Hodel and Tiller, Linear Alg. Appl., 1992)
+
+  Asys = zgpbal(Asys); [A,B,C,D] = sys2ss(Asys);   # balance coefficients
+  meps = 2*eps*norm ([A, B; C, D], "fro");
+  Asys = zgreduce(Asys,meps);  [A, B, C, D] = sys2ss(Asys); # ENVD algorithm
+  if(!isempty(A))
+    ## repeat with dual system
+    Asys = ss2sys(A', C', B', D');   Asys = zgreduce(Asys,meps);
+
+    ## transform back
+    [A,B,C,D] = sys2ss(Asys);    Asys = ss2sys(A', C', B', D');
+  endif
+
+  zer = [];                     # assume none
+  [A,B,C,D] = sys2ss(Asys);
+  if( !isempty(C) )
+    [W,r,Pi] = qr([C, D]');
+    [nonz,ztmp] = zgrownorm(r,meps);
+    if(nonz)
+      ## We can now solve the generalized eigenvalue problem.
+      [pp,mm] = size(D);
+      nn = rows(A);
+      Afm = [A , B ; C, D] * W';
+      Bfm = [eye(nn), zeros(nn,mm); zeros(pp,nn+mm)]*W';
+
+      jdx = (mm+1):(mm+nn);
+      Af = Afm(1:nn,jdx);
+      Bf = Bfm(1:nn,jdx);
+      zer = qz(Af,Bf);
+    endif
+  endif
+
+  mz = length(zer);
+  [A,B,C,D] = sys2ss(Ao);               # recover original system
+  ## compute leading coefficient
+  if ( (nargout == 2) && siso)
+    n = rows(A);
+    if ( mz == n)
+      gain = D;
+    elseif ( mz < n )
+      gain = C*(A^(n-1-mz))*B;
+    endif
+  else
+    gain = [];
+  endif
+endfunction
+