Mercurial > hg > octave-nkf
diff scripts/control/base/tzero.m @ 3432:e39d90787668
[project @ 2000-01-14 04:22:59 by jwe]
author | jwe |
---|---|
date | Fri, 14 Jan 2000 04:28:06 +0000 |
parents | |
children | 2e06c3941943 |
line wrap: on
line diff
new file mode 100644 --- /dev/null +++ b/scripts/control/base/tzero.m @@ -0,0 +1,125 @@ +## Copyright (C) 1996 Auburn University. All rights reserved. +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by the +## Free Software Foundation; either version 2, or (at your option) any +## later version. +## +## Octave is distributed in the hope that it will be useful, but WITHOUT +## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +## for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, write to the Free +## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. + +## -*- texinfo -*- +## @deftypefn {Function File} {} tzero (@var{a}, @var{b}, @var{c}, @var{d}@{, @var{opt}@}) +## @deftypefnx {Function File} {} tzero (@var{sys}@{,@var{opt}@}) +## Compute transmission zeros of a continuous +## @example +## . +## x = Ax + Bu +## y = Cx + Du +## @end example +## or discrete +## @example +## x(k+1) = A x(k) + B u(k) +## y(k) = C x(k) + D u(k) +## @end example +## system. +## @strong{Outputs} +## @table @var +## @item zer +## transmission zeros of the system +## @item gain +## leading coefficient (pole-zero form) of SISO transfer function +## returns gain=0 if system is multivariable +## @end table +## @strong{References} +## @enumerate +## @item Emami-Naeini and Van Dooren, Automatica, 1982. +## @item Hodel, "Computation of Zeros with Balancing," 1992 Lin. Alg. Appl. +## @end enumerate +## @end deftypefn + +## Author: R. Bruce Tenison <btenison@eng.auburn.edu> +## Created: July 4, 1994 +## A. S. Hodel Aug 1995: allow for MIMO and system data structures + +function [zer, gain] = tzero (A, B, C, D) + + ## get A,B,C,D and Asys variables, regardless of initial form + if(nargin == 4) + Asys = ss2sys(A,B,C,D); + elseif( (nargin == 1) && (! is_struct(A))) + usage("[zer,gain] = tzero(A,B,C,D) or zer = tzero(Asys)"); + elseif(nargin != 1) + usage("[zer,gain] = tzero(A,B,C,D) or zer = tzero(Asys)"); + else + Asys = A; + [A,B,C,D] = sys2ss(Asys); + endif + + Ao = Asys; # save for leading coefficient + siso = is_siso(Asys); + digital = is_digital(Asys); # check if it's mixed or not + + ## see if it's a gain block + if(isempty(A)) + zer = []; + gain = D; + return; + endif + + ## First, balance the system via the zero computation generalized eigenvalue + ## problem balancing method (Hodel and Tiller, Linear Alg. Appl., 1992) + + Asys = zgpbal(Asys); [A,B,C,D] = sys2ss(Asys); # balance coefficients + meps = 2*eps*norm ([A, B; C, D], "fro"); + Asys = zgreduce(Asys,meps); [A, B, C, D] = sys2ss(Asys); # ENVD algorithm + if(!isempty(A)) + ## repeat with dual system + Asys = ss2sys(A', C', B', D'); Asys = zgreduce(Asys,meps); + + ## transform back + [A,B,C,D] = sys2ss(Asys); Asys = ss2sys(A', C', B', D'); + endif + + zer = []; # assume none + [A,B,C,D] = sys2ss(Asys); + if( !isempty(C) ) + [W,r,Pi] = qr([C, D]'); + [nonz,ztmp] = zgrownorm(r,meps); + if(nonz) + ## We can now solve the generalized eigenvalue problem. + [pp,mm] = size(D); + nn = rows(A); + Afm = [A , B ; C, D] * W'; + Bfm = [eye(nn), zeros(nn,mm); zeros(pp,nn+mm)]*W'; + + jdx = (mm+1):(mm+nn); + Af = Afm(1:nn,jdx); + Bf = Bfm(1:nn,jdx); + zer = qz(Af,Bf); + endif + endif + + mz = length(zer); + [A,B,C,D] = sys2ss(Ao); # recover original system + ## compute leading coefficient + if ( (nargout == 2) && siso) + n = rows(A); + if ( mz == n) + gain = D; + elseif ( mz < n ) + gain = C*(A^(n-1-mz))*B; + endif + else + gain = []; + endif +endfunction +