Mercurial > hg > octave-nkf
diff src/DLD-FUNCTIONS/dasrt.cc @ 4115:fc2048d4cd21
[project @ 2002-10-22 21:28:42 by jwe]
author | jwe |
---|---|
date | Tue, 22 Oct 2002 21:28:42 +0000 |
parents | c2562b2593e2 |
children | 944b276d8856 |
line wrap: on
line diff
--- a/src/DLD-FUNCTIONS/dasrt.cc +++ b/src/DLD-FUNCTIONS/dasrt.cc @@ -43,7 +43,7 @@ #include "DASRT-opts.cc" -// Global pointers for user defined function required by dassl. +// Global pointers for user defined function required by dasrt. static octave_function *dasrt_f; static octave_function *dasrt_j; static octave_function *dasrt_cf; @@ -235,79 +235,134 @@ DEFUN_DLD (dasrt, args, nargout, "-*- texinfo -*-\n\ -@deftypefn {Loadable Function} {[@var{x}, @var{xdot}, @var{t}] =} dasrt (@var{fj} [, @var{g}], @var{x_0}, @var{xdot_0}, @var{t_out} [, @var{t_crit}])\n\ -Solve a system of differential/algebraic equations with functional\n\ -stopping criteria.\n\ +@deftypefn {Loadable Function} {[@var{x}, @var{xdot}, @var{t_out}, @var{istat}, @var{msg}] =} dasrt (@var{fcn} [, @var{g}], @var{x_0}, @var{xdot_0}, @var{t} [, @var{t_crit}])\n\ +Solve the set of differential-algebraic equations\n\ +@tex\n\ +$$ 0 = f (\\dot{x}, x, t) $$\n\ +with\n\ +$$ x(t_0) = x_0, \\dot{x}(t_0) = \\dot{x}_0 $$\n\ +@end tex\n\ +@ifinfo\n\ \n\ -The function to be integrated must be of the form:\n\ @example\n\ -@var{res} = f (@var{x}, @var{xdot}, @var{t}) = 0\n\ +0 = f (xdot, x, t)\n\ +@end example\n\ +\n\ +with\n\ +\n\ +@example\n\ +x(t_0) = x_0, xdot(t_0) = xdot_0\n\ @end example\n\ \n\ -The stopping condition must be of the form:\n\ +@end ifinfo\n\ +with functional stopping criteria (root solving).\n\ +\n\ +The solution is returned in the matrices @var{x} and @var{xdot},\n\ +with each row in the result matrices corresponding to one of the\n\ +elements in the vector @var{t_out}. The first element of @var{t}\n\ +should be @math{t_0} and correspond to the initial state of the\n\ +system @var{x_0} and its derivative @var{xdot_0}, so that the first\n\ +row of the output @var{x} is @var{x_0} and the first row\n\ +of the output @var{xdot} is @var{xdot_0}.\n\ +\n\ +The vector @var{t} provides an upper limit on the length of the\n\ +integration. If the stopping condition is met, the vector\n\ +@var{t_out} will be shorter than @var{t}, and the final element of\n\ +@var{t_out} will be the point at which the stopping condition was met,\n\ +and may not correspond to any element of the vector @var{t}.\n\ +\n\ +The first argument, @var{fcn}, is a string that names the function to\n\ +call to compute the vector of residuals for the set of equations.\n\ +It must have the form\n\ \n\ @example\n\ -@var{res} = g (@var{x}, @var{t}) = 0\n\ -@end example\n\ -\n\ -The Jacobian (if included) must be of the form:\n\ -\n\ -@example\n\ -@var{jac} = j (@var{x}, @var{xdot}, @var{t}, @var{cj})\n\ - = df/dx + cj*df/dxdot\n\ +@var{res} = f (@var{x}, @var{xdot}, @var{t})\n\ @end example\n\ \n\ @noindent\n\ -The following inputs are entered:\n\ +in which @var{x}, @var{xdot}, and @var{res} are vectors, and @var{t} is a\n\ +scalar.\n\ +\n\ +If @var{fcn} is a two-element string array, the first element names\n\ +the function @math{f} described above, and the second element names\n\ +a function to compute the modified Jacobian \n\ -@table @var\n\ -@item fj\n\ -The string vector containing either @var{f} or both @var{f} and @var{j}.\n\ -\n\ -@item f\n\ -The function to be integrated.\n\ +@tex\n\ +$$\n\ +J = {\\partial f \\over \\partial x}\n\ + + c {\\partial f \\over \\partial \\dot{x}}\n\ +$$\n\ +@end tex\n\ +@ifinfo\n\ \n\ -@item g\n\ -The function with the stopping conditions.\n\ +@example\n\ + df df\n\ +jac = -- + c ------\n\ + dx d xdot\n\ +@end example\n\ +\n\ +@end ifinfo\n\ +\n\ +The modified Jacobian function must have the form\n\ +\n\ +@example\n\ \n\ -@item j\n\ -The optional Jacobian function. If not included, it will be approximated\n\ -by finite differences.\n\ +@var{jac} = j (@var{x}, @var{xdot}, @var{t}, @var{c})\n\ +\n\ +@end example\n\ \n\ -@item x_0\n\ -The initial state.\n\ +The optional second argument names a function that defines the\n\ +constraint functions whose roots are desired during the integration.\n\ +This function must have the form\n\ \n\ -@item xdot_0\n\ -The time derivative of the initial state.\n\ +@example\n\ +@var{g_out} = g (@var{x}, @var{t})\n\ +@end example\n\ \n\ -@item t_out\n\ -The times at which the solution should be returned. This vector should\n\ -include the initial time a the first value.\n\ +and return a vector of the constraint function values.\n\ +If the value of any of the constraint functions changes sign, @sc{Dasrt}\n\ +will attempt to stop the integration at the point of the sign change.\n\ +\n\ +If the name of the constraint function is omitted, @code{dasrt} solves\n\ +the saem problem as @code{daspk} or @code{dassl}. \n\ -@item t_crit\n\ -The times at which the function is non-smooth or poorly behaved.\n\ +Note that because of numerical errors in the constraint functions\n\ +due to roundoff and integration error, @sc{Dasrt} may return false\n\ +roots, or return the same root at two or more nearly equal values of\n\ +@var{T}. If such false roots are suspected, the user should consider\n\ +smaller error tolerances or higher precision in the evaluation of the\n\ +constraint functions.\n\ \n\ -@end table\n\ -\n\ -@noindent\n\ -The following outputs are returned:\n\ +If a root of some constraint function defines the end of the problem,\n\ +the input to @sc{Dasrt} should nevertheless allow integration to a\n\ +point slightly past that root, so that @sc{Dasrt} can locate the root\n\ +by interpolation.\n\ \n\ -@table @var\n\ -@item x\n\ -The states at each time in @var{t}.\n\ +The third and fourth arguments to @code{dasrt} specify the initial\n\ +condition of the states and their derivatives, and the fourth argument\n\ +specifies a vector of output times at which the solution is desired,\n\ +including the time corresponding to the initial condition.\n\ +\n\ +The set of initial states and derivatives are not strictly required to\n\ +be consistent. In practice, however, @sc{Dassl} is not very good at\n\ +determining a consistent set for you, so it is best if you ensure that\n\ +the initial values result in the function evaluating to zero.\n\ \n\ -@item xdot\n\ -The time derivative of the states at each time in @var{t}.\n\ +The sixth argument is optional, and may be used to specify a set of\n\ +times that the DAE solver should not integrate past. It is useful for\n\ +avoiding difficulties with singularities and points where there is a\n\ +discontinuity in the derivative.\n\ \n\ -@item t\n\ -All the times in the requested output time vector up to the stopping\n\ -criteria. The time at which the stopping criteria is achieved is returned\n\ -as the last time in the vector.\n\ -@end table\n\ +After a successful computation, the value of @var{istate} will be\n\ +greater than zero (consistent with the Fortran version of @sc{Dassl}).\n\ +\n\ +If the computation is not successful, the value of @var{istate} will be\n\ +less than zero and @var{msg} will contain additional information.\n\ \n\ You can use the function @code{dasrt_options} to set optional\n\ parameters for @code{dasrt}.\n\ -@end deftypefn") +@end deftypefn\n\ +@seealso{daspk, dasrt, lsode, odessa}") { octave_value_list retval;