Mercurial > hg > octave-nkf
view scripts/general/cplxpair.m @ 15107:03381a36f70d
generate convenience libraries for new parse-tree and interpfcn subdirectories
* src/Makefile.am (liboctinterp_la_SOURCES): Include octave.cc in the
list, not $(DIST_SRC).
(liboctinterp_la_LIBADD): Include octave-value/liboctave-value.la,
parse-tree/libparse-tree.la, interp-core/libinterp-core.la,
interpfcn/libinterpfcn.la, and corefcn/libcorefcn.la in the list.
* src/interp-core/module.mk (noinst_LTLIBRARIES): Add
interp-core/libinterp-core.la to the list.
(interp_core_libinterp_core_la_SOURCES): New variable.
* src/interpfcn/module.mk (noinst_LTLIBRARIES): Add
interpfcn/libinterpfcn.la to the list.
(interpfcn_libinterpfcn_la_SOURCES): New variable.
* src/parse-tree/module.mk (noinst_LTLIBRARIES): Add
parse-tree/libparse-tree.la to the list.
(parse_tree_libparse_tree_la_SOURCES): New variable.
* src/octave-value/module.mk (noinst_LTLIBRARIES): Add
octave-value/liboctave-value.la to the list.
(octave_value_liboctave_value_la_SOURCES): New variable.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sun, 05 Aug 2012 09:04:30 -0400 |
parents | 5d3a684236b0 |
children | b81b9d079515 |
line wrap: on
line source
## Copyright (C) 2000-2012 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} cplxpair (@var{z}) ## @deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol}) ## @deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol}, @var{dim}) ## Sort the numbers @var{z} into complex conjugate pairs ordered by ## increasing real part. Place the negative imaginary complex number ## first within each pair. Place all the real numbers (those with ## @code{abs (imag (@var{z}) / @var{z}) < @var{tol})}) after the ## complex pairs. ## ## If @var{tol} is unspecified the default value is 100*@code{eps}. ## ## By default the complex pairs are sorted along the first non-singleton ## dimension of @var{z}. If @var{dim} is specified, then the complex ## pairs are sorted along this dimension. ## ## Signal an error if some complex numbers could not be paired. Signal an ## error if all complex numbers are not exact conjugates (to within ## @var{tol}). Note that there is no defined order for pairs with identical ## real parts but differing imaginary parts. ## @c Set example in small font to prevent overfull line ## ## @smallexample ## cplxpair (exp(2i*pi*[0:4]'/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5) ## @end smallexample ## @end deftypefn ## FIXME: subsort returned pairs by imaginary magnitude ## FIXME: Why doesn't exp (2i*pi*[0:4]'/5) produce exact conjugates. Does ## FIXME: it in Matlab? The reason is that complex pairs are supposed ## FIXME: to be exact conjugates, and not rely on a tolerance test. ## 2006-05-12 David Bateman - Modified for NDArrays function y = cplxpair (z, tol, dim) if (nargin < 1 || nargin > 3) print_usage (); endif if (length (z) == 0) y = zeros (size (z)); return; endif if (nargin < 2 || isempty (tol)) if (isa (z, "single")) tol = 100 * eps("single"); else tol = 100*eps; endif endif nd = ndims (z); orig_dims = size (z); if (nargin < 3) ## Find the first singleton dimension. dim = 0; while (dim < nd && orig_dims(dim+1) == 1) dim++; endwhile dim++; if (dim > nd) dim = 1; endif else dim = floor (dim); if (dim < 1 || dim > nd) error ("cplxpair: invalid dimension along which to sort"); endif endif ## Move dimension to treat first, and convert to a 2-D matrix. perm = [dim:nd, 1:dim-1]; z = permute (z, perm); sz = size (z); n = sz (1); m = prod (sz) / n; z = reshape (z, n, m); ## Sort the sequence in terms of increasing real values. [q, idx] = sort (real (z), 1); z = z(idx + n * ones (n, 1) * [0:m-1]); ## Put the purely real values at the end of the returned list. cls = "double"; if (isa (z, "single")) cls = "single"; endif [idxi, idxj] = find (abs (imag (z)) ./ (abs (z) + realmin (cls)) < tol); q = sparse (idxi, idxj, 1, n, m); nr = sum (q, 1); [q, idx] = sort (q, 1); z = z(idx); y = z; ## For each remaining z, place the value and its conjugate at the ## start of the returned list, and remove them from further ## consideration. for j = 1:m p = n - nr(j); for i = 1:2:p if (i+1 > p) error ("cplxpair: could not pair all complex numbers"); endif [v, idx] = min (abs (z(i+1:p) - conj (z(i)))); if (v > tol) error ("cplxpair: could not pair all complex numbers"); endif if (imag (z(i)) < 0) y([i, i+1]) = z([i, idx+i]); else y([i, i+1]) = z([idx+i, i]); endif z(idx+i) = z(i+1); endfor endfor ## Reshape the output matrix. y = ipermute (reshape (y, sz), perm); endfunction %!demo %! [ cplxpair(exp(2i*pi*[0:4]'/5)), exp(2i*pi*[3; 2; 4; 1; 0]/5) ] %!assert (isempty (cplxpair ([]))) %!assert (cplxpair (1), 1) %!assert (cplxpair ([1+1i, 1-1i]), [1-1i, 1+1i]) %!assert (cplxpair ([1+1i, 1+1i, 1, 1-1i, 1-1i, 2]), ... %! [1-1i, 1+1i, 1-1i, 1+1i, 1, 2]) %!assert (cplxpair ([1+1i; 1+1i; 1; 1-1i; 1-1i; 2]), ... %! [1-1i; 1+1i; 1-1i; 1+1i; 1; 2]) %!assert (cplxpair ([0, 1, 2]), [0, 1, 2]) %!shared z %! z = exp (2i*pi*[4; 3; 5; 2; 6; 1; 0]/7); %!assert (cplxpair (z(randperm (7))), z) %!assert (cplxpair (z(randperm (7))), z) %!assert (cplxpair (z(randperm (7))), z) %!assert (cplxpair ([z(randperm(7)),z(randperm(7))]), [z,z]) %!assert (cplxpair ([z(randperm(7)),z(randperm(7))],[],1), [z,z]) %!assert (cplxpair ([z(randperm(7)).';z(randperm(7)).'],[],2), [z.';z.']) %!## tolerance test %!assert (cplxpair ([1i, -1i, 1+(1i*eps)],2*eps), [-1i, 1i, 1+(1i*eps)])