Mercurial > hg > octave-nkf
view liboctave/dim-vector.h @ 9585:06b8b51dca48
also handle user-defined graphics properties in new property name validation scheme
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 28 Aug 2009 18:37:31 -0400 |
parents | cc1fd3084cb2 |
children | 11844593875a |
line wrap: on
line source
/* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 John W. Eaton Copyirght (C) 2009 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #if !defined (octave_dim_vector_h) #define octave_dim_vector_h 1 #include <cassert> #include <sstream> #include <string> #include "lo-error.h" #include "oct-types.h" // Rationale: This implementation is more tricky than Array, but the big plus // is that dim_vector requires only one allocation instead of two. // It is (slightly) patterned after GCC's basic_string implementation. // rep is a pointer to an array of memory, comprising count, length, // and the data: // <count> // <ndims> // rep --> <dims[0]> // <dims[1]> // ... // // The inlines count(), ndims() recover this data // from the rep. rep points to the beginning of dims to grant // faster access (internally, reinterpret_cast is a no-op). class dim_vector { private: octave_idx_type *rep; octave_idx_type& ndims() const { return rep[-1]; } octave_idx_type& count() const { return rep[-2]; } // Constructs a new rep with count = 1 and ndims given. static octave_idx_type *newrep (int ndims) { octave_idx_type *r = new octave_idx_type[ndims + 2]; *r++ = 1; *r++ = ndims; return r; } // Clones this->rep. octave_idx_type *clonerep (void) { int l = ndims(); octave_idx_type *r = new octave_idx_type[l + 2]; *r++ = 1; *r++ = l; for (int i = 0; i < l; i++) r[i] = rep[i]; return r; } // Clones & resizes this->rep to length n, filling by given value. octave_idx_type *resizerep (int n, octave_idx_type fill_value) { int l = ndims(); if (n < 2) n = 2; octave_idx_type *r = new octave_idx_type[n + 2]; *r++ = 1; *r++ = n; if (l > n) l = n; int j; for (j = 0; j < l; j++) r[j] = rep[j]; for (; j < n; j++) r[j] = fill_value; return r; } // Frees the rep. void freerep (void) { assert (count() == 0); delete [] (rep - 2); } void make_unique (void) { if (count() > 1) { --count(); rep = clonerep (); } } public: explicit dim_vector (octave_idx_type n) : rep (newrep (2)) { rep[0] = n; rep[1] = 1; } explicit dim_vector (octave_idx_type r, octave_idx_type c) : rep (newrep (2)) { rep[0] = r; rep[1] = c; } explicit dim_vector (octave_idx_type r, octave_idx_type c, octave_idx_type p) : rep (newrep (3)) { rep[0] = r; rep[1] = c; rep[2] = p; } octave_idx_type& elem (int i) { assert (i >= 0 && i < ndims()); make_unique (); return rep[i]; } octave_idx_type elem (int i) const { assert (i >= 0 && i < ndims()); return rep[i]; } void chop_trailing_singletons (void) { make_unique (); int l = ndims(); for (int i = l - 1; i > 1; i--) { if (rep[i] == 1) l--; else break; } ndims() = l; } void chop_all_singletons (void) { make_unique (); int j = 0; int l = ndims(); for (int i = 0; i < l; i++) { if (rep[i] != 1) rep[j++] = rep[i]; } if (j == 1) rep[1] = 1; ndims() = j > 2 ? j : 2; } private: static octave_idx_type *nil_rep (void) { static dim_vector zv (0, 0); return zv.rep; } explicit dim_vector (octave_idx_type *r) : rep (r) { } public: explicit dim_vector (void) : rep (nil_rep ()) { count()++; } dim_vector (const dim_vector& dv) : rep (dv.rep) { count()++; } static dim_vector alloc (int n) { return dim_vector (newrep (n < 2 ? 2 : n)); } dim_vector& operator = (const dim_vector& dv) { if (&dv != this) { if (--count() <= 0) freerep (); rep = dv.rep; count()++; } return *this; } ~dim_vector (void) { if (--count() <= 0) freerep (); } int length (void) const { return ndims(); } octave_idx_type& operator () (int i) { return elem (i); } octave_idx_type operator () (int i) const { return elem (i); } void resize (int n, int fill_value = 0) { int len = length (); if (n != len) { octave_idx_type *r = resizerep (n, fill_value); if (--count() <= 0) freerep (); rep = r; } } std::string str (char sep = 'x') const { std::ostringstream buf; for (int i = 0; i < length (); i++) { buf << elem (i); if (i < length () - 1) buf << sep; } std::string retval = buf.str (); return retval; } bool all_zero (void) const { bool retval = true; for (int i = 0; i < length (); i++) { if (elem (i) != 0) { retval = false; break; } } return retval; } bool any_zero (void) const { bool retval = false; for (int i = 0; i < length (); i++) { if (elem (i) == 0) { retval = true; break; } } return retval; } int num_ones (void) const { int retval = 0; for (int i = 0; i < length (); i++) if (elem (i) == 1) retval++; return retval; } bool all_ones (void) const { return (num_ones () == length ()); } // This is the number of elements that a matrix with this dimension // vector would have, NOT the number of dimensions (elements in the // dimension vector). octave_idx_type numel (int n = 0) const { int n_dims = length (); octave_idx_type retval = 1; for (int i = n; i < n_dims; i++) retval *= elem (i); return retval; } bool any_neg (void) const { int n_dims = length (), i; for (i = 0; i < n_dims; i++) if (elem (i) < 0) break; return i < n_dims; } dim_vector squeeze (void) const { dim_vector new_dims = *this; bool dims_changed = 1; int k = 0; for (int i = 0; i < length (); i++) { if (elem (i) == 1) dims_changed = true; else new_dims(k++) = elem (i); } if (dims_changed) { if (k == 0) new_dims = dim_vector (1, 1); else if (k == 1) { // There is one non-singleton dimension, so we need // to decide the correct orientation. if (elem (0) == 1) { // The original dimension vector had a leading // singleton dimension. octave_idx_type tmp = new_dims(0); new_dims.resize (2); new_dims(0) = 1; new_dims(1) = tmp; } else { // The first element of the original dimension vector // was not a singleton dimension. new_dims.resize (2); new_dims(1) = 1; } } else new_dims.resize(k); } return new_dims; } bool concat (const dim_vector& dvb, int dim = 0) { if (all_zero ()) { *this = dvb; return true; } if (dvb.all_zero ()) return true; int na = length (); int nb = dvb.length (); // Find the max and min value of na and nb int n_max = na > nb ? na : nb; int n_min = na < nb ? na : nb; // The elements of the dimension vectors can only differ // if the dim variable differs from the actual dimension // they differ. for (int i = 0; i < n_min; i++) { if (elem(i) != dvb(i) && dim != i) return false; } // Ditto. for (int i = n_min; i < n_max; i++) { if (na > n_min) { if (elem(i) != 1 && dim != i) return false; } else { if (dvb(i) != 1 && dim != i) return false; } } // If we want to add the dimension vectors at a dimension // larger than both, then we need to set n_max to this number // so that we resize *this to the right dimension. n_max = n_max > (dim + 1) ? n_max : (dim + 1); // Resize *this to the appropriate dimensions. if (n_max > na) resize (n_max, 1); // Larger or equal since dim has been decremented by one. if (dim >= nb) elem (dim)++; else elem (dim) += dvb(dim); return true; } // Forces certain dimensionality, preserving numel (). Missing dimensions are // set to 1, redundant are folded into the trailing one. If n = 1, the result // is 2d and the second dim is 1 (dim_vectors are always at least 2D). // If the original dimensions were all zero, the padding value is zero. dim_vector redim (int n) const { int n_dims = length (); if (n_dims == n) return *this; else { dim_vector retval; retval.resize (n == 1 ? 2 : n, 1); bool zeros = true; for (int i = 0; i < n && i < n_dims; i++) { retval(i) = elem (i); zeros = zeros && elem (i) == 0; } if (n < n_dims) { octave_idx_type k = 1; for (int i = n; i < n_dims; i++) k *= elem (i); retval(n - 1) *= k; } else if (zeros) { for (int i = n_dims; i < n; i++) retval.elem (i) = 0; } return retval; } } bool is_vector (void) const { return (length () == 2 && (elem (0) == 1 || elem (1) == 1)); } int first_non_singleton (int def = 0) const { for (int i = 0; i < length (); i++) { if (elem (i) != 1) return i; } return def; } }; static inline bool operator == (const dim_vector& a, const dim_vector& b) { bool retval = true; int a_len = a.length (); int b_len = b.length (); if (a_len != b_len) retval = false; else { for (int i = 0; i < a_len; i++) { if (a(i) != b(i)) { retval = false; break; } } } return retval; } static inline bool operator != (const dim_vector& a, const dim_vector& b) { return ! operator == (a, b); } #endif /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */