Mercurial > hg > octave-nkf
view libinterp/dldfcn/symbfact.cc @ 20373:075a5e2e1ba5 stable
doc: Update more docstrings to have one sentence summary as first line.
Reviewed build-aux, libinterp/dldfcn, libinterp/octave-value,
libinterp/parse-tree directories.
* build-aux/mk-opts.pl, libinterp/dldfcn/__magick_read__.cc,
libinterp/dldfcn/amd.cc, libinterp/dldfcn/audiodevinfo.cc,
libinterp/dldfcn/audioread.cc, libinterp/dldfcn/ccolamd.cc,
libinterp/dldfcn/chol.cc, libinterp/dldfcn/colamd.cc,
libinterp/dldfcn/convhulln.cc, libinterp/dldfcn/dmperm.cc,
libinterp/dldfcn/fftw.cc, libinterp/dldfcn/qr.cc, libinterp/dldfcn/symbfact.cc,
libinterp/dldfcn/symrcm.cc, libinterp/octave-value/ov-base.cc,
libinterp/octave-value/ov-bool-mat.cc, libinterp/octave-value/ov-cell.cc,
libinterp/octave-value/ov-class.cc, libinterp/octave-value/ov-fcn-handle.cc,
libinterp/octave-value/ov-fcn-inline.cc, libinterp/octave-value/ov-java.cc,
libinterp/octave-value/ov-null-mat.cc, libinterp/octave-value/ov-oncleanup.cc,
libinterp/octave-value/ov-range.cc, libinterp/octave-value/ov-struct.cc,
libinterp/octave-value/ov-typeinfo.cc, libinterp/octave-value/ov-usr-fcn.cc,
libinterp/octave-value/ov.cc, libinterp/parse-tree/lex.ll,
libinterp/parse-tree/oct-parse.in.yy, libinterp/parse-tree/pt-binop.cc,
libinterp/parse-tree/pt-eval.cc, libinterp/parse-tree/pt-mat.cc:
doc: Update more docstrings to have one sentence summary as first line.
author | Rik <rik@octave.org> |
---|---|
date | Sun, 03 May 2015 21:52:42 -0700 |
parents | 4197fc428c7d |
children |
line wrap: on
line source
/* Copyright (C) 2005-2015 David Bateman Copyright (C) 1998-2005 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "SparseCmplxCHOL.h" #include "SparsedbleCHOL.h" #include "oct-spparms.h" #include "sparse-util.h" #include "oct-locbuf.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN_DLD (symbfact, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{count}, @var{h}, @var{parent}, @var{post}, @var{r}] =} symbfact (@var{S})\n\ @deftypefnx {Loadable Function} {[@dots{}] =} symbfact (@var{S}, @var{typ})\n\ @deftypefnx {Loadable Function} {[@dots{}] =} symbfact (@var{S}, @var{typ}, @var{mode})\n\ \n\ Perform a symbolic factorization analysis on the sparse matrix @var{S}.\n\ \n\ The input variables are\n\ \n\ @table @var\n\ @item S\n\ @var{S} is a complex or real sparse matrix.\n\ \n\ @item typ\n\ Is the type of the factorization and can be one of\n\ \n\ @table @samp\n\ @item sym\n\ Factorize @var{S}. This is the default.\n\ \n\ @item col\n\ Factorize @code{@var{S}' * @var{S}}.\n\ \n\ @item row\n\ Factorize @tcode{@var{S} * @var{S}'}.\n\ \n\ @item lo\n\ Factorize @tcode{@var{S}'}\n\ @end table\n\ \n\ @item mode\n\ The default is to return the Cholesky@tie{}factorization for @var{r}, and if\n\ @var{mode} is @qcode{'L'}, the conjugate transpose of the\n\ Cholesky@tie{}factorization is returned. The conjugate transpose version is\n\ faster and uses less memory, but returns the same values for @var{count},\n\ @var{h}, @var{parent} and @var{post} outputs.\n\ @end table\n\ \n\ The output variables are\n\ \n\ @table @var\n\ @item count\n\ The row counts of the Cholesky@tie{}factorization as determined by @var{typ}.\n\ \n\ @item h\n\ The height of the elimination tree.\n\ \n\ @item parent\n\ The elimination tree itself.\n\ \n\ @item post\n\ A sparse boolean matrix whose structure is that of the Cholesky\n\ factorization as determined by @var{typ}.\n\ @end table\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin < 1 || nargin > 3 || nargout > 5) { print_usage (); return retval; } #ifdef HAVE_CHOLMOD cholmod_common Common; cholmod_common *cm = &Common; CHOLMOD_NAME(start) (cm); double spu = octave_sparse_params::get_key ("spumoni"); if (spu == 0.) { cm->print = -1; SUITESPARSE_ASSIGN_FPTR (printf_func, cm->print_function, 0); } else { cm->print = static_cast<int> (spu) + 2; SUITESPARSE_ASSIGN_FPTR (printf_func, cm->print_function, &SparseCholPrint); } cm->error_handler = &SparseCholError; SUITESPARSE_ASSIGN_FPTR2 (divcomplex_func, cm->complex_divide, divcomplex); SUITESPARSE_ASSIGN_FPTR2 (hypot_func, cm->hypotenuse, hypot); double dummy; cholmod_sparse Astore; cholmod_sparse *A = &Astore; A->packed = true; A->sorted = true; A->nz = 0; #ifdef USE_64_BIT_IDX_T A->itype = CHOLMOD_LONG; #else A->itype = CHOLMOD_INT; #endif A->dtype = CHOLMOD_DOUBLE; A->stype = 1; A->x = &dummy; if (args(0).is_real_type ()) { const SparseMatrix a = args(0).sparse_matrix_value (); A->nrow = a.rows (); A->ncol = a.cols (); A->p = a.cidx (); A->i = a.ridx (); A->nzmax = a.nnz (); A->xtype = CHOLMOD_REAL; if (a.rows () > 0 && a.cols () > 0) A->x = a.data (); } else if (args(0).is_complex_type ()) { const SparseComplexMatrix a = args(0).sparse_complex_matrix_value (); A->nrow = a.rows (); A->ncol = a.cols (); A->p = a.cidx (); A->i = a.ridx (); A->nzmax = a.nnz (); A->xtype = CHOLMOD_COMPLEX; if (a.rows () > 0 && a.cols () > 0) A->x = a.data (); } else gripe_wrong_type_arg ("symbfact", args(0)); octave_idx_type coletree = false; octave_idx_type n = A->nrow; if (nargin > 1) { char ch; std::string str = args(1).string_value (); ch = tolower (str.c_str ()[0]); if (ch == 'r') A->stype = 0; else if (ch == 'c') { n = A->ncol; coletree = true; A->stype = 0; } else if (ch == 's') A->stype = 1; else if (ch == 's') A->stype = -1; else error ("symbfact: unrecognized TYP in symbolic factorization"); } if (A->stype && A->nrow != A->ncol) error ("symbfact: S must be a square matrix"); if (!error_state) { OCTAVE_LOCAL_BUFFER (octave_idx_type, Parent, n); OCTAVE_LOCAL_BUFFER (octave_idx_type, Post, n); OCTAVE_LOCAL_BUFFER (octave_idx_type, ColCount, n); OCTAVE_LOCAL_BUFFER (octave_idx_type, First, n); OCTAVE_LOCAL_BUFFER (octave_idx_type, Level, n); cholmod_sparse *F = CHOLMOD_NAME(transpose) (A, 0, cm); cholmod_sparse *Aup, *Alo; if (A->stype == 1 || coletree) { Aup = A ; Alo = F ; } else { Aup = F ; Alo = A ; } CHOLMOD_NAME(etree) (Aup, Parent, cm); if (cm->status < CHOLMOD_OK) { error ("matrix corrupted"); goto symbfact_error; } if (CHOLMOD_NAME(postorder) (Parent, n, 0, Post, cm) != n) { error ("postorder failed"); goto symbfact_error; } CHOLMOD_NAME(rowcolcounts) (Alo, 0, 0, Parent, Post, 0, ColCount, First, Level, cm); if (cm->status < CHOLMOD_OK) { error ("matrix corrupted"); goto symbfact_error; } if (nargout > 4) { cholmod_sparse *A1, *A2; if (A->stype == 1) { A1 = A; A2 = 0; } else if (A->stype == -1) { A1 = F; A2 = 0; } else if (coletree) { A1 = F; A2 = A; } else { A1 = A; A2 = F; } // count the total number of entries in L octave_idx_type lnz = 0 ; for (octave_idx_type j = 0 ; j < n ; j++) lnz += ColCount[j]; // allocate the output matrix L (pattern-only) SparseBoolMatrix L (n, n, lnz); // initialize column pointers lnz = 0; for (octave_idx_type j = 0 ; j < n ; j++) { L.xcidx(j) = lnz; lnz += ColCount[j]; } L.xcidx(n) = lnz; /* create a copy of the column pointers */ octave_idx_type *W = First; for (octave_idx_type j = 0 ; j < n ; j++) W[j] = L.xcidx (j); // get workspace for computing one row of L cholmod_sparse *R = CHOLMOD_NAME (allocate_sparse) (n, 1, n, false, true, 0, CHOLMOD_PATTERN, cm); octave_idx_type *Rp = static_cast<octave_idx_type *>(R->p); octave_idx_type *Ri = static_cast<octave_idx_type *>(R->i); // compute L one row at a time for (octave_idx_type k = 0 ; k < n ; k++) { // get the kth row of L and store in the columns of L CHOLMOD_NAME (row_subtree) (A1, A2, k, Parent, R, cm) ; for (octave_idx_type p = 0 ; p < Rp[1] ; p++) L.xridx (W[Ri[p]]++) = k ; // add the diagonal entry L.xridx (W[k]++) = k ; } // free workspace CHOLMOD_NAME (free_sparse) (&R, cm) ; // transpose L to get R, or leave as is if (nargin < 3) L = L.transpose (); // fill numerical values of L with one's for (octave_idx_type p = 0 ; p < lnz ; p++) L.xdata(p) = true; retval(4) = L; } ColumnVector tmp (n); if (nargout > 3) { for (octave_idx_type i = 0; i < n; i++) tmp(i) = Post[i] + 1; retval(3) = tmp; } if (nargout > 2) { for (octave_idx_type i = 0; i < n; i++) tmp(i) = Parent[i] + 1; retval(2) = tmp; } if (nargout > 1) { /* compute the elimination tree height */ octave_idx_type height = 0 ; for (int i = 0 ; i < n ; i++) height = (height > Level[i] ? height : Level[i]); height++ ; retval(1) = static_cast<double> (height); } for (octave_idx_type i = 0; i < n; i++) tmp(i) = ColCount[i]; retval(0) = tmp; } symbfact_error: #else error ("symbfact: not available in this version of Octave"); #endif return retval; }