Mercurial > hg > octave-nkf
view scripts/geometry/griddata3.m @ 14383:07c55bceca23 stable
Fix guarded_eval() subfunction in fminunc (bug #35534).
* fminunc.m: Fix guarded_eval() subfunction in fminunc (bug #35534).
author | Olaf Till <olaf.till@uni-jena.de> |
---|---|
date | Wed, 15 Feb 2012 14:44:37 +0100 |
parents | cb4f1915db92 |
children | 4e8f1d1b0d75 |
line wrap: on
line source
## Copyright (C) 2007-2012 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{vi} =} griddata3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}, @var{method}, @var{options}) ## ## Generate a regular mesh from irregular data using interpolation. ## The function is defined by @code{@var{v} = f (@var{x}, @var{y}, @var{z})}. ## The interpolation points are specified by @var{xi}, @var{yi}, @var{zi}. ## ## The interpolation method can be @code{"nearest"} or @code{"linear"}. ## If method is omitted it defaults to @code{"linear"}. ## @seealso{griddata, griddatan, delaunayn} ## @end deftypefn ## Author: David Bateman <dbateman@free.fr> function vi = griddata3 (x, y, z, v, xi, yi, zi, method, varargin) if (nargin < 7) print_usage (); endif if (!all (size (x) == size (y) & size (x) == size(z) & size(x) == size (v))) error ("griddata3: X, Y, Z, and V must be vectors of same length"); endif ## meshgrid xi, yi and zi if they are vectors unless they ## are vectors of the same length if (isvector (xi) && isvector (yi) && isvector (zi) && (numel (xi) != numel (yi) || numel (xi) != numel (zi))) [xi, yi, zi] = meshgrid (xi, yi, zi); endif if (any (size(xi) != size(yi)) || any (size(xi) != size(zi))) error ("griddata3: XI, YI and ZI must be vectors or matrices of same size"); endif vi = griddatan ([x(:), y(:), z(:)], v(:), [xi(:), yi(:), zi(:)], varargin{:}); vi = reshape (vi, size (xi)); endfunction %!testif HAVE_QHULL %! old_state = rand ("state"); %! restore_state = onCleanup (@() rand ("state", old_state)); %! rand ("state", 0); %! x = 2 * rand (1000, 1) - 1; %! y = 2 * rand (1000, 1) - 1; %! z = 2 * rand (1000, 1) - 1; %! v = x.^2 + y.^2 + z.^2; %! [xi, yi, zi] = meshgrid (-0.8:0.2:0.8); %! vi = griddata3 (x, y, z, v, xi, yi, zi, 'linear'); %! vv = vi - xi.^2 - yi.^2 - zi.^2; %! assert (max (abs (vv(:))), 0, 0.1); %!testif HAVE_QHULL %! old_state = rand ("state"); %! restore_state = onCleanup (@() rand ("state", old_state)); %! rand ("state", 0); %! x = 2 * rand (1000, 1) - 1; %! y = 2 * rand (1000, 1) - 1; %! z = 2 * rand (1000, 1) - 1; %! v = x.^2 + y.^2 + z.^2; %! [xi, yi, zi] = meshgrid (-0.8:0.2:0.8); %! vi = griddata3 (x, y, z, v, xi, yi, zi, 'nearest'); %! vv = vi - xi.^2 - yi.^2 - zi.^2; %! assert (max (abs (vv(:))), 0, 0.1)