Mercurial > hg > octave-nkf
view scripts/polynomial/mkpp.m @ 14383:07c55bceca23 stable
Fix guarded_eval() subfunction in fminunc (bug #35534).
* fminunc.m: Fix guarded_eval() subfunction in fminunc (bug #35534).
author | Olaf Till <olaf.till@uni-jena.de> |
---|---|
date | Wed, 15 Feb 2012 14:44:37 +0100 |
parents | 72c96de7a403 |
children | 11949c9795a0 |
line wrap: on
line source
## Copyright (C) 2000-2012 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{pp} =} mkpp (@var{breaks}, @var{coefs}) ## @deftypefnx {Function File} {@var{pp} =} mkpp (@var{breaks}, @var{coefs}, @var{d}) ## ## Construct a piecewise polynomial (pp) structure from sample points ## @var{breaks} and coefficients @var{coefs}. @var{breaks} must be a vector of ## strictly increasing values. The number of intervals is given by ## @code{@var{ni} = length (@var{breaks}) - 1}. ## When @var{m} is the polynomial order @var{coefs} must be of ## size: @var{ni} x @var{m} + 1. ## ## The i-th row of @var{coefs}, ## @code{@var{coefs} (@var{i},:)}, contains the coefficients for the polynomial ## over the @var{i}-th interval, ordered from highest (@var{m}) to ## lowest (@var{0}). ## ## @var{coefs} may also be a multi-dimensional array, specifying a vector-valued ## or array-valued polynomial. In that case the polynomial order is defined ## by the length of the last dimension of @var{coefs}. ## The size of first dimension(s) are given by the scalar or ## vector @var{d}. If @var{d} is not given it is set to @code{1}. ## In any case @var{coefs} is reshaped to a 2-D matrix of ## size @code{[@var{ni}*prod(@var{d} @var{m})] } ## ## @seealso{unmkpp, ppval, spline, pchip, ppder, ppint, ppjumps} ## @end deftypefn function pp = mkpp (x, P, d) # check number of arguments if (nargin < 2 || nargin > 3) print_usage (); endif # check x if (length (x) < 2) error ("mkpp: at least one interval is needed"); endif if (!isvector (x)) error ("mkpp: x must be a vector"); endif len = length (x) - 1; dP = length (size (P)); pp = struct ("form", "pp", "breaks", x(:).', "coefs", [], "pieces", len, "order", prod (size (P)) / len, "dim", 1); if (nargin == 3) pp.dim = d; pp.order /= prod (d); endif dim_vec = [pp.pieces * prod(pp.dim), pp.order]; pp.coefs = reshape (P, dim_vec); endfunction %!demo # linear interpolation %! x=linspace(0,pi,5)'; %! t=[sin(x),cos(x)]; %! m=diff(t)./(x(2)-x(1)); %! b=t(1:4,:); %! pp = mkpp(x, [m(:),b(:)]); %! xi=linspace(0,pi,50); %! plot(x,t,"x",xi,ppval(pp,xi)); %! legend("control","interp"); %!shared b,c,pp %! b = 1:3; c = 1:24; pp=mkpp(b,c); %!assert (pp.pieces,2); %!assert (pp.order,12); %!assert (pp.dim,1); %!assert (size(pp.coefs),[2,12]); %! pp=mkpp(b,c,2); %!assert (pp.pieces,2); %!assert (pp.order,6); %!assert (pp.dim,2); %!assert (size(pp.coefs),[4,6]); %! pp=mkpp(b,c,3); %!assert (pp.pieces,2); %!assert (pp.order,4); %!assert (pp.dim,3); %!assert (size(pp.coefs),[6,4]); %! pp=mkpp(b,c,[2,3]); %!assert (pp.pieces,2); %!assert (pp.order,2); %!assert (pp.dim,[2,3]); %!assert (size(pp.coefs),[12,2]);