Mercurial > hg > octave-nkf
view scripts/polynomial/spline.m @ 14383:07c55bceca23 stable
Fix guarded_eval() subfunction in fminunc (bug #35534).
* fminunc.m: Fix guarded_eval() subfunction in fminunc (bug #35534).
author | Olaf Till <olaf.till@uni-jena.de> |
---|---|
date | Wed, 15 Feb 2012 14:44:37 +0100 |
parents | 72c96de7a403 |
children | 190952239c2c |
line wrap: on
line source
## Copyright (C) 2000-2012 Kai Habel ## Copyright (C) 2006 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{pp} =} spline (@var{x}, @var{y}) ## @deftypefnx {Function File} {@var{yi} =} spline (@var{x}, @var{y}, @var{xi}) ## Return the cubic spline interpolant of points @var{x} and @var{y}. ## ## When called with two arguments, return the piecewise polynomial @var{pp} ## that may be used with @code{ppval} to evaluate the polynomial at specific ## points. When called with a third input argument, @code{spline} evaluates ## the spline at the points @var{xi}. The third calling form @code{spline ## (@var{x}, @var{y}, @var{xi})} is equivalent to @code{ppval (spline ## (@var{x}, @var{y}), @var{xi})}. ## ## The variable @var{x} must be a vector of length @var{n}. @var{y} can be ## either a vector or array. If @var{y} is a vector it must have a length of ## either @var{n} or @code{@var{n} + 2}. If the length of @var{y} is ## @var{n}, then the "not-a-knot" end condition is used. If the length of ## @var{y} is @code{@var{n} + 2}, then the first and last values of the ## vector @var{y} are the values of the first derivative of the cubic spline ## at the endpoints. ## ## If @var{y} is an array, then the size of @var{y} must have the form ## @tex ## $$[s_1, s_2, \cdots, s_k, n]$$ ## @end tex ## @ifnottex ## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n}]} ## @end ifnottex ## or ## @tex ## $$[s_1, s_2, \cdots, s_k, n + 2].$$ ## @end tex ## @ifnottex ## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n} + 2]}. ## @end ifnottex ## The array is reshaped internally to a matrix where the leading ## dimension is given by ## @tex ## $$s_1 s_2 \cdots s_k$$ ## @end tex ## @ifnottex ## @code{@var{s1} * @var{s2} * @dots{} * @var{sk}} ## @end ifnottex ## and each row of this matrix is then treated separately. Note that this ## is exactly opposite to @code{interp1} but is done for @sc{matlab} ## compatibility. ## ## @seealso{pchip, ppval, mkpp, unmkpp} ## @end deftypefn ## This code is based on csape.m from octave-forge, but has been ## modified to use the sparse solver code in octave that itself allows ## special casing of tri-diagonal matrices, modified for NDArrays and ## for the treatment of vectors y 2 elements longer than x as complete ## splines. function ret = spline (x, y, xi) x = x(:); n = length (x); if (n < 2) error ("spline: requires at least 2 points"); endif ## Check the size and shape of y ndy = ndims (y); szy = size (y); if (ndy == 2 && (szy(1) == n || szy(2) == n)) if (szy(2) == n) a = y.'; else a = y; szy = fliplr (szy); endif else a = shiftdim (reshape (y, [prod(szy(1:end-1)), szy(end)]), 1); endif for k = (1:columns (a))(any (isnan (a))) ok = ! isnan (a(:,k)); a(!ok,k) = spline (x(ok), a(ok,k), x(!ok)); endfor complete = false; if (size (a, 1) == n + 2) complete = true; dfs = a(1,:); dfe = a(end,:); a = a(2:end-1,:); endif if (~issorted (x)) [x, idx] = sort(x); a = a(idx,:); endif b = c = zeros (size (a)); h = diff (x); idx = ones (columns (a), 1); if (complete) if (n == 2) d = (dfs + dfe) / (x(2) - x(1)) ^ 2 + ... 2 * (a(1,:) - a(2,:)) / (x(2) - x(1)) ^ 3; c = (-2 * dfs - dfe) / (x(2) - x(1)) - ... 3 * (a(1,:) - a(2,:)) / (x(2) - x(1)) ^ 2; b = dfs; a = a(1,:); d = d(1:n-1,:); c = c(1:n-1,:); b = b(1:n-1,:); a = a(1:n-1,:); else if (n == 3) dg = 1.5 * h(1) - 0.5 * h(2); c(2:n-1,:) = 1/dg(1); else dg = 2 * (h(1:n-2) .+ h(2:n-1)); dg(1) = dg(1) - 0.5 * h(1); dg(n-2) = dg(n-2) - 0.5 * h(n-1); e = h(2:n-2); g = 3 * diff (a(2:n,:)) ./ h(2:n-1,idx) ... - 3 * diff (a(1:n-1,:)) ./ h(1:n-2,idx); g(1,:) = 3 * (a(3,:) - a(2,:)) / h(2) ... - 3 / 2 * (3 * (a(2,:) - a(1,:)) / h(1) - dfs); g(n-2,:) = 3 / 2 * (3 * (a(n,:) - a(n-1,:)) / h(n-1) - dfe) ... - 3 * (a(n-1,:) - a(n-2,:)) / h(n-2); c(2:n-1,:) = spdiags ([[e(:); 0], dg, [0; e(:)]], [-1, 0, 1], n-2, n-2) \ g; endif c(1,:) = (3 / h(1) * (a(2,:) - a(1,:)) - 3 * dfs - c(2,:) * h(1)) / (2 * h(1)); c(n,:) = - (3 / h(n-1) * (a(n,:) - a(n-1,:)) - 3 * dfe + c(n-1,:) * h(n-1)) / (2 * h(n-1)); b(1:n-1,:) = diff (a) ./ h(1:n-1, idx) ... - h(1:n-1,idx) / 3 .* (c(2:n,:) + 2 * c(1:n-1,:)); d = diff (c) ./ (3 * h(1:n-1, idx)); d = d(1:n-1,:); c = c(1:n-1,:); b = b(1:n-1,:); a = a(1:n-1,:); endif else if (n == 2) b = (a(2,:) - a(1,:)) / (x(2) - x(1)); a = a(1,:); d = []; c = []; b = b(1:n-1,:); a = a(1:n-1,:); elseif (n == 3) n = 2; c = (a(1,:) - a(3,:)) / ((x(3) - x(1)) * (x(2) - x(3))) ... + (a(2,:) - a(1,:)) / ((x(2) - x(1)) * (x(2) - x(3))); b = (a(2,:) - a(1,:)) * (x(3) - x(1)) ... / ((x(2) - x(1)) * (x(3) - x(2))) ... + (a(1,:) - a(3,:)) * (x(2) - x(1)) ... / ((x(3) - x(1)) * (x(3) - x(2))); a = a(1,:); d = []; x = [min(x), max(x)]; c = c(1:n-1,:); b = b(1:n-1,:); a = a(1:n-1,:); else g = zeros (n-2, columns (a)); g(1,:) = 3 / (h(1) + h(2)) ... * (a(3,:) - a(2,:) - h(2) / h(1) * (a(2,:) - a(1,:))); g(n-2,:) = 3 / (h(n-1) + h(n-2)) ... * (h(n-2) / h(n-1) * (a(n,:) - a(n-1,:)) - (a(n-1,:) - a(n-2,:))); if (n > 4) g(2:n - 3,:) = 3 * diff (a(3:n-1,:)) ./ h(3:n-2,idx) ... - 3 * diff (a(2:n-2,:)) ./ h(2:n - 3,idx); dg = 2 * (h(1:n-2) .+ h(2:n-1)); dg(1) = dg(1) - h(1); dg(n-2) = dg(n-2) - h(n-1); ldg = udg = h(2:n-2); udg(1) = udg(1) - h(1); ldg(n - 3) = ldg(n-3) - h(n-1); c(2:n-1,:) = spdiags ([[ldg(:); 0], dg, [0; udg(:)]], [-1, 0, 1], n-2, n-2) \ g; elseif (n == 4) dg = [h(1) + 2 * h(2); 2 * h(2) + h(3)]; ldg = h(2) - h(3); udg = h(2) - h(1); c(2:n-1,:) = spdiags ([[ldg(:);0], dg, [0; udg(:)]], [-1, 0, 1], n-2, n-2) \ g; endif c(1,:) = c(2,:) + h(1) / h(2) * (c(2,:) - c(3,:)); c(n,:) = c(n-1,:) + h(n-1) / h(n-2) * (c(n-1,:) - c(n-2,:)); b = diff (a) ./ h(1:n-1, idx) ... - h(1:n-1, idx) / 3 .* (c(2:n,:) + 2 * c(1:n-1,:)); d = diff (c) ./ (3 * h(1:n-1, idx)); d = d(1:n-1,:);d = d.'(:); c = c(1:n-1,:);c = c.'(:); b = b(1:n-1,:);b = b.'(:); a = a(1:n-1,:);a = a.'(:); endif endif ret = mkpp (x, cat (2, d, c, b, a), szy(1:end-1)); if (nargin == 3) ret = ppval (ret, xi); endif endfunction %!demo %! x = 0:10; y = sin(x); %! xspline = 0:0.1:10; yspline = spline(x,y,xspline); %! title("spline fit to points from sin(x)"); %! plot(xspline,sin(xspline),"r",xspline,yspline,"g-",x,y,"b+"); %! legend("original","interpolation","interpolation points"); %! %-------------------------------------------------------- %! % confirm that interpolated function matches the original %!shared x,y,abserr %! x = [0:10]; y = sin(x); abserr = 1e-14; %!assert (spline(x,y,x), y, abserr); %!assert (spline(x,y,x'), y', abserr); %!assert (spline(x',y',x'), y', abserr); %!assert (spline(x',y',x), y, abserr); %!assert (isempty(spline(x',y',[]))); %!assert (isempty(spline(x,y,[]))); %!assert (spline(x,[y;y],x), [spline(x,y,x);spline(x,y,x)],abserr) %!assert (spline(x,[y;y],x'), [spline(x,y,x);spline(x,y,x)],abserr) %!assert (spline(x',[y;y],x), [spline(x,y,x);spline(x,y,x)],abserr) %!assert (spline(x',[y;y],x'), [spline(x,y,x);spline(x,y,x)],abserr) %! y = cos(x) + i*sin(x); %!assert (spline(x,y,x), y, abserr) %!assert (real(spline(x,y,x)), real(y), abserr); %!assert (real(spline(x,y,x.')), real(y).', abserr); %!assert (real(spline(x.',y.',x.')), real(y).', abserr); %!assert (real(spline(x.',y,x)), real(y), abserr); %!assert (imag(spline(x,y,x)), imag(y), abserr); %!assert (imag(spline(x,y,x.')), imag(y).', abserr); %!assert (imag(spline(x.',y.',x.')), imag(y).', abserr); %!assert (imag(spline(x.',y,x)), imag(y), abserr); %!test %! xnan = 5; %! y(x==xnan) = NaN; %! ok = ! isnan (y); %! assert (spline (x, y, x(ok)), y(ok), abserr); %!test %! ok = ! isnan (y); %! assert (! isnan (spline (x, y, x(!ok)))); %!test %! x = [1,2]; %! y = [1,4]; %! assert (spline (x,y,x), [1,4], abserr); %!test %! x = [2,1]; %! y = [1,4]; %! assert (spline (x,y,x), [1,4], abserr); %!test %! x = [1,2]; %! y = [1,2,3,4]; %! pp = spline (x,y); %! [x,P] = unmkpp (pp); %! assert (norm (P-[3,-3,1,2]), 0, abserr); %!test %! x = [2,1]; %! y = [1,2,3,4]; %! pp = spline (x,y); %! [x,P] = unmkpp (pp); %! assert (norm (P-[7,-9,1,3]), 0, abserr);