Mercurial > hg > octave-nkf
view scripts/control/base/are.m @ 6971:0a9d97cf2e13
[project @ 2007-10-07 19:44:53 by dbateman]
author | dbateman |
---|---|
date | Sun, 07 Oct 2007 19:44:53 +0000 |
parents | 34f96dd5441b |
children | 93c65f2a5668 |
line wrap: on
line source
## Copyright (C) 1993, 1994, 1995 Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{x} =} are (@var{a}, @var{b}, @var{c}, @var{opt}) ## Solve the Algebraic Riccati Equation ## @iftex ## @tex ## $$ ## A^TX + XA - XBX + C = 0 ## $$ ## @end tex ## @end iftex ## @ifinfo ## @example ## a' * x + x * a - x * b * x + c = 0 ## @end example ## @end ifinfo ## ## @strong{Inputs} ## @noindent ## for identically dimensioned square matrices ## @table @var ## @item a ## @var{n} by @var{n} matrix; ## @item b ## @var{n} by @var{n} matrix or @var{n} by @var{m} matrix; in the latter case ## @var{b} is replaced by @math{b:=b*b'}; ## @item c ## @var{n} by @var{n} matrix or @var{p} by @var{m} matrix; in the latter case ## @var{c} is replaced by @math{c:=c'*c}; ## @item opt ## (optional argument; default = @code{"B"}): ## String option passed to @code{balance} prior to ordered Schur decomposition. ## @end table ## ## @strong{Output} ## @table @var ## @item x ## solution of the @acronym{ARE}. ## @end table ## ## @strong{Method} ## Laub's Schur method (@acronym{IEEE} Transactions on ## Automatic Control, 1979) is applied to the appropriate Hamiltonian ## matrix. ## @seealso{balance, dare} ## @end deftypefn ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> ## Created: August 1993 function x = are (a, b, c, opt) if (nargin == 3 || nargin == 4) if (nargin == 4) if (! (strcmp (opt, "N") || strcmp (opt, "P") ... || strcmp (opt, "S") || strcmp (opt, "B") ... || strcmp (opt, "n") || strcmp (opt, "p") ... || strcmp (opt, "s") || strcmp (opt, "b"))) warning ("are: opt has an invalid value; setting to B"); opt = "B"; endif else opt = "B"; endif if ((n = issquare(a)) == 0) error ("are: a is not square"); endif if (is_controllable(a,b) == 0) warning ("are: a, b are not controllable"); endif if ((m = issquare (b)) == 0) b = b * b'; m = rows (b); endif if (is_observable (a, c) == 0) warning ("are: a,c are not observable"); endif if ((p = issquare (c)) == 0) c = c' * c; p = rows (c); endif if (n != m || n != p) error ("are: a, b, c not conformably dimensioned."); endif ## Should check for controllability/observability here ## use Boley-Golub (Syst. Contr. Letters, 1984) method, not the ## ## n-1 ## rank ([ B A*B ... A^ *B]) method [d, h] = balance ([a, -b; -c, -a'], opt); [u, s] = schur (h, "A"); u = d * u; n1 = n + 1; n2 = 2 * n; x = u (n1:n2, 1:n) / u (1:n, 1:n); else print_usage (); endif endfunction