Mercurial > hg > octave-nkf
view scripts/control/base/dre.m @ 6971:0a9d97cf2e13
[project @ 2007-10-07 19:44:53 by dbateman]
author | dbateman |
---|---|
date | Sun, 07 Oct 2007 19:44:53 +0000 |
parents | 34f96dd5441b |
children | 93c65f2a5668 |
line wrap: on
line source
## Copyright (C) 1998 Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{tvals}, @var{plist}] =} dre (@var{sys}, @var{q}, @var{r}, @var{qf}, @var{t0}, @var{tf}, @var{ptol}, @var{maxits}) ## Solve the differential Riccati equation ## @ifinfo ## @example ## -d P/dt = A'P + P A - P B inv(R) B' P + Q ## P(tf) = Qf ## @end example ## @end ifinfo ## @iftex ## @tex ## $$ -{dP \over dt} = A^T P+PA-PBR^{-1}B^T P+Q $$ ## $$ P(t_f) = Q_f $$ ## @end tex ## @end iftex ## for the @acronym{LTI} system sys. Solution of ## standard @acronym{LTI} state feedback optimization ## @ifinfo ## @example ## min int(t0, tf) ( x' Q x + u' R u ) dt + x(tf)' Qf x(tf) ## @end example ## @end ifinfo ## @iftex ## @tex ## $$ \min \int_{t_0}^{t_f} x^T Q x + u^T R u dt + x(t_f)^T Q_f x(t_f) $$ ## @end tex ## @end iftex ## optimal input is ## @ifinfo ## @example ## u = - inv(R) B' P(t) x ## @end example ## @end ifinfo ## @iftex ## @tex ## $$ u = - R^{-1} B^T P(t) x $$ ## @end tex ## @end iftex ## @strong{Inputs} ## @table @var ## @item sys ## continuous time system data structure ## @item q ## state integral penalty ## @item r ## input integral penalty ## @item qf ## state terminal penalty ## @item t0 ## @itemx tf ## limits on the integral ## @item ptol ## tolerance (used to select time samples; see below); default = 0.1 ## @item maxits ## number of refinement iterations (default=10) ## @end table ## @strong{Outputs} ## @table @var ## @item tvals ## time values at which @var{p}(@var{t}) is computed ## @item plist ## list values of @var{p}(@var{t}); @var{plist} @{ @var{i} @} ## is @var{p}(@var{tvals}(@var{i})) ## @end table ## @var{tvals} is selected so that: ## @iftex ## @tex ## $$ \Vert plist_{i} - plist_{i-1} \Vert < ptol $$ ## @end tex ## @end iftex ## @ifinfo ## @example ## || Plist@{i@} - Plist@{i-1@} || < Ptol ## @end example ## @end ifinfo ## for every @var{i} between 2 and length(@var{tvals}). ## @end deftypefn function [tvals, Plist] = dre (sys, Q, R, Qf, t0, tf, Ptol, maxits) if(nargin < 6 | nargin > 8 | nargout != 2) print_usage (); elseif(!isstruct(sys)) error("sys must be a system data structure") elseif(is_digital(sys)) error("sys must be a continuous time system") elseif(!ismatrix(Q) | !ismatrix(R) | !ismatrix(Qf)) error("Q, R, and Qf must be matrices."); elseif(!isscalar(t0) | !isscalar(tf)) error("t0 and tf must be scalars") elseif(t0 >= tf) error("t0=%e >= tf=%e",t0,tf); elseif(nargin == 6) Ptol = 0.1; elseif(!isscalar(Ptol)) error("Ptol must be a scalar"); elseif(Ptol <= 0) error("Ptol must be positive"); endif if(nargin < 8) maxits = 10; elseif(!isscalar(maxits)) error("maxits must be a scalar"); elseif(maxits <= 0) error("maxits must be positive"); endif maxits = ceil(maxits); [aa,bb] = sys2ss(sys); nn = sysdimensions(sys,"cst"); mm = sysdimensions(sys,"in"); pp = sysdimensions(sys,"out"); if(size(Q) != [nn, nn]) error("Q(%dx%d); sys has %d states",rows(Q),columns(Q),nn); elseif(size(Qf) != [nn, nn]) error("Qf(%dx%d); sys has %d states",rows(Qf),columns(Qf),nn); elseif(size(R) != [mm, mm]) error("R(%dx%d); sys has %d inputs",rows(R),columns(R),mm); endif ## construct Hamiltonian matrix H = [aa , -(bb/R)*bb' ; -Q, -aa']; ## select time step to avoid numerical overflow fast_eig = max(abs(eig(H))); tc = log(10)/fast_eig; nst = ceil((tf-t0)/tc); tvals = -linspace(-tf,-t0,nst); Plist = list(Qf); In = eye(nn); n1 = nn+1; n2 = nn+nn; done = 0; while(!done) done = 1; # assume this pass will do the job ## sort time values in reverse order tvals = -sort(-tvals); tvlen = length(tvals); maxerr = 0; ## compute new values of P(t); recompute old values just in case for ii=2:tvlen uv_i_minus_1 = [ In ; Plist{ii-1} ]; delta_t = tvals(ii-1) - tvals(ii); uv = expm(-H*delta_t)*uv_i_minus_1; Qi = uv(n1:n2,1:nn)/uv(1:nn,1:nn); Plist(ii) = (Qi+Qi')/2; ## check error Perr = norm(Plist{ii} - Plist{ii-1})/norm(Plist{ii}); maxerr = max(maxerr,Perr); if(Perr > Ptol) new_t = mean(tvals([ii,ii-1])); tvals = [tvals, new_t]; done = 0; endif endfor ## check number of iterations maxits = maxits - 1; done = done+(maxits==0); endwhile if(maxerr > Ptol) warning("dre: \n\texiting with%4d points, max rel chg. =%e, Ptol=%e\n", ... tvlen,maxerr,Ptol); tvals = tvals(1:length(Plist)); endif endfunction