Mercurial > hg > octave-nkf
view scripts/general/interp2.m @ 6971:0a9d97cf2e13
[project @ 2007-10-07 19:44:53 by dbateman]
author | dbateman |
---|---|
date | Sun, 07 Oct 2007 19:44:53 +0000 |
parents | ebf96cc00ee9 |
children | 2883ea1c5c18 |
line wrap: on
line source
## Copyright (C) 2000 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{zi}=} interp2 (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}) ## @deftypefnx {Function File} {@var{zi}=} interp2 (@var{Z}, @var{xi}, @var{yi}) ## @deftypefnx {Function File} {@var{zi}=} interp2 (@var{Z}, @var{n}) ## @deftypefnx {Function File} {@var{zi}=} interp2 (@dots{}, @var{method}) ## @deftypefnx {Function File} {@var{zi}=} interp2 (@dots{}, @var{method}, @var{extrapval}) ## ## Two-dimensional interpolation. @var{x}, @var{y} and @var{z} describe a ## surface function. If @var{x} and @var{y} are vectors their length ## must correspondent to the size of @var{z}. @var{x} and @var{Yy} must be ## monotonic. If they are matrices they must have the @code{meshgrid} ## format. ## ## @table @code ## @item interp2 (@var{x}, @var{y}, @var{Z}, @var{xi}, @var{yi}, @dots{}) ## Returns a matrix corresponding to the points described by the ## matrices @var{XI}, @var{YI}. ## ## If the last argument is a string, the interpolation method can ## be specified. The method can be 'linear', 'nearest' or 'cubic'. ## If it is omitted 'linear' interpolation is assumed. ## ## @item interp2 (@var{z}, @var{xi}, @var{yi}) ## Assumes @code{@var{x} = 1:rows (@var{z})} and @code{@var{y} = ## 1:columns (@var{z})} ## ## @item interp2 (@var{z}, @var{n}) ## Interleaves the Matrix @var{z} n-times. If @var{n} is ommited a value ## of @code{@var{n} = 1} is assumed. ## @end table ## ## The variable @var{method} defines the method to use for the ## interpolation. It can take one of the values ## ## @table @asis ## @item 'nearest' ## Return the nearest neighbor. ## @item 'linear' ## Linear interpolation from nearest neighbors. ## @item 'pchip' ## Piece-wise cubic hermite interpolating polynomial (not implemented yet). ## @item 'cubic' ## Cubic interpolation from four nearest neighbors. ## @item 'spline' ## Cubic spline interpolation--smooth first and second derivatives ## throughout the curve. ## @end table ## ## If a scalar value @var{extrapval} is defined as the final value, then ## values outside the mesh as set to this value. Note that in this case ## @var{method} must be defined as well. If @var{extrapval} is not ## defined then NA is assumed. ## ## @seealso{interp1} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## 2005-03-02 Thomas Weber <weber@num.uni-sb.de> ## * Add test cases ## 2005-03-02 Paul Kienzle <pkienzle@users.sf.net> ## * Simplify ## 2005-04-23 Dmitri A. Sergatskov <dasergatskov@gmail.com> ## * Modified demo and test for new gnuplot interface ## 2005-09-07 Hoxide <hoxide_dirac@yahoo.com.cn> ## * Add bicubic interpolation method ## * Fix the eat line bug when the last element of XI or YI is ## negative or zero. ## 2005-11-26 Pierre Baldensperger <balden@libertysurf.fr> ## * Rather big modification (XI,YI no longer need to be ## "meshgridded") to be consistent with the help message ## above and for compatibility. function ZI = interp2 (varargin) Z = X = Y = XI = YI = n = []; method = "linear"; extrapval = NA; switch (nargin) case 1 Z = varargin{1}; case 2 if (ischar (varargin{2})) [Z, method] = deal (varargin{:}); else [Z, n] = deal (varargin{:}); endif case 3 if (ischar (varargin{3})) [Z, n, method] = deal (varargin{:}); else [Z, XI, YI] = deal (varargin{:}); endif case 4 if (ischar (varargin{4})) [Z, XI, YI, method] = deal (varargin{:}); else [Z, n, method, extrapval] = deal (varargin{:}); endif case 5 if (ischar (varargin{4})) [Z, XI, YI, method, extrapval] = deal (varargin{:}); else [X, Y, Z, XI, YI] = deal (varargin{:}); endif case 6 [X, Y, Z, XI, YI, method] = deal (varargin{:}); case 7 [X, Y, Z, XI, YI, method, extrapval] = deal (varargin{:}); otherwise print_usage (); endswitch ## Type checking. if (!ismatrix (Z)) error ("interp2 expected matrix Z"); endif if (!isempty (n) && !isscalar (n)) error ("interp2 expected scalar n"); endif if (!ischar (method)) error ("interp2 expected string 'method'"); endif if (!isscalar (extrapval)) error ("interp2 expected n extrapval"); endif ## Define X, Y, XI, YI if needed [zr, zc] = size (Z); if (isempty (X)) X = 1:zc; Y = 1:zr; endif if (! isnumeric (X) || ! isnumeric (Y)) error ("interp2 expected numeric X, Y"); endif if (! isempty (n)) p = 2^n; XI = (p:p*zc)/p; YI = (p:p*zr)'/p; endif if (! isnumeric (XI) || ! isnumeric (YI)) error ("interp2 expected numeric XI, YI"); endif if (strcmp (method, "linear") || strcmp (method, "nearest")) ## If X and Y vectors produce a grid from them if (isvector (X) && isvector (Y)) [X, Y] = meshgrid (X, Y); elseif (! size_equal (X, Y)) error ("X and Y must be matrices of same size"); endif if (! size_equal (X, Z)) error ("X and Y size must match Z dimensions"); endif ## If Xi and Yi are vectors of different orientation build a grid if ((rows (XI) == 1 && columns (YI) == 1) || (columns (XI) == 1 && rows (YI) == 1)) [XI, YI] = meshgrid (XI, YI); elseif (! size_equal (XI, YI)) error ("XI and YI must be matrices of same size"); endif shape = size (XI); XI = reshape (XI, 1, prod (shape)); YI = reshape (YI, 1, prod (shape)); xidx = lookup (X(1, 2:end-1), XI) + 1; yidx = lookup (Y(2:end-1, 1), YI) + 1; if (strcmp (method, "linear")) ## each quad satisfies the equation z(x,y)=a+b*x+c*y+d*xy ## ## a-b ## | | ## c-d a = Z(1:(zr - 1), 1:(zc - 1)); b = Z(1:(zr - 1), 2:zc) - a; c = Z(2:zr, 1:(zc - 1)) - a; d = Z(2:zr, 2:zc) - a - b - c; idx = sub2ind (size (a), yidx, xidx); ## scale XI, YI values to a 1-spaced grid Xsc = (XI - X(1, xidx)) ./ (X(1, xidx + 1) - X(1, xidx)); Ysc = (YI - Y(yidx, 1)') ./ (Y(yidx + 1, 1) - Y(yidx, 1))'; ## apply plane equation ZI = a(idx) + b(idx).*Xsc + c(idx).*Ysc + d(idx).*Xsc.*Ysc; elseif (strcmp (method, "nearest")) xtable = X(1, :); ytable = Y(:, 1)'; ii = (XI - xtable(xidx) > xtable(xidx + 1) - XI); jj = (YI - ytable(yidx) > ytable(yidx + 1) - YI); idx = sub2ind (size (Z), yidx+jj, xidx+ii); ZI = Z(idx); endif ## set points outside the table to 'extrapval' ZI (XI < X(1,1) | XI > X(1,end) | YI < Y(1,1) | YI > Y(end,1)) = extrapval; ZI = reshape (ZI, shape); else ## If X and Y vectors produce a grid from them if (isvector (X) && isvector (Y)) X = X(:).'; Y = Y(:); if (!isequal ([length(X), length(Y)], size(Z))) error ("X and Y size must match Z dimensions"); endif elseif (!size_equal (X, Y)) error ("X and Y must be matrices of same size"); if (! size_equal (X, Z)) error ("X and Y size must match Z dimensions"); endif endif ## If Xi and Yi are vectors of different orientation build a grid if ((rows (XI) == 1 && columns (YI) == 1) || (columns (XI) == 1 && rows (YI) == 1)) ## Do nothing elseif (! size_equal (XI, YI)) error ("XI and YI must be matrices of same size"); endif ## FIXME bicubic/__splinen__ don't handle arbitrary XI, YI if (strcmp (method, "cubic")) ZI = bicubic (X, Y, Z, XI(1,:), YI(:,1), extrapval); elseif (strcmp (method, "spline")) ZI = __splinen__ ({Y(:,1).', X(1,:)}, Z, {YI(:,1), XI(1,:)}, extrapval, "spline"); else error ("interpolation method not recognized"); endif endif endfunction %!demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,4]; y=[10,11,12]; %! xi=linspace(min(x),max(x),17); %! yi=linspace(min(y),max(y),26)'; %! mesh(xi,yi,interp2(x,y,A,xi,yi,'linear')); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; %!demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,4]; y=[10,11,12]; %! xi=linspace(min(x),max(x),17); %! yi=linspace(min(y),max(y),26)'; %! mesh(xi,yi,interp2(x,y,A,xi,yi,'nearest')); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; %!demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,2]; y=[10,11,12]; %! xi=linspace(min(x),max(x),17); %! yi=linspace(min(y),max(y),26)'; %! mesh(xi,yi,interp2(x,y,A,xi,yi,'cubic')); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; %!demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,2]; y=[10,11,12]; %! xi=linspace(min(x),max(x),17); %! yi=linspace(min(y),max(y),26)'; %! mesh(xi,yi,interp2(x,y,A,xi,yi,'spline')); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off; %!test % simple test %! x = [1,2,3]; %! y = [4,5,6,7]; %! [X, Y] = meshgrid(x,y); %! Orig = X.^2 + Y.^3; %! xi = [1.2,2, 1.5]; %! yi = [6.2, 4.0, 5.0]'; %! %! Expected = ... %! [243, 245.4, 243.9; %! 65.6, 68, 66.5; %! 126.6, 129, 127.5]; %! Result = interp2(x,y,Orig, xi, yi); %! %! assert(Result, Expected, 1000*eps); %!test % 2^n form %! x = [1,2,3]; %! y = [4,5,6,7]; %! [X, Y] = meshgrid(x,y); %! Orig = X.^2 + Y.^3; %! xi = [1:0.25:3]; yi = [4:0.25:7]'; %! Expected = interp2(x,y,Orig, xi, yi); %! Result = interp2(Orig,2); %! %! assert(Result, Expected, 10*eps); %!test % matrix slice %! A = eye(4); %! assert(interp2(A,[1:4],[1:4]),[1,1,1,1]); %!test % non-gridded XI,YI %! A = eye(4); %! assert(interp2(A,[1,2;3,4],[1,3;2,4]),[1,0;0,1]); %!test % for values outside of boundaries %! x = [1,2,3]; %! y = [4,5,6,7]; %! [X, Y] = meshgrid(x,y); %! Orig = X.^2 + Y.^3; %! xi = [0,4]; %! yi = [3,8]'; %! assert(interp2(x,y,Orig, xi, yi),[NA,NA;NA,NA]); %! assert(interp2(x,y,Orig, xi, yi,'linear', 0),[0,0;0,0]); %!test % for values at boundaries %! A=[1,2;3,4]; %! x=[0,1]; %! y=[2,3]'; %! assert(interp2(x,y,A,x,y,'linear'), A); %! assert(interp2(x,y,A,x,y,'nearest'), A);