Mercurial > hg > octave-nkf
view liboctave/intNDArray.cc @ 11842:0b9c56b6bf0e release-3-0-x
partially sync Matrix::expm and ComplexMatrix::expm with development repo
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Fri, 19 Sep 2008 11:29:51 +0200 |
parents | cfe88845aa1e |
children |
line wrap: on
line source
// N-D Array manipulations. /* Copyright (C) 2004, 2005, 2006, 2007, 2008 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "Array-util.h" #include "mx-base.h" #include "lo-ieee.h" // unary operations template <class T> boolNDArray intNDArray<T>::operator ! (void) const { boolNDArray b (this->dims ()); for (octave_idx_type i = 0; i < this->length (); i++) b.elem (i) = ! this->elem (i); return b; } template <class T> bool intNDArray<T>::any_element_not_one_or_zero (void) const { octave_idx_type nel = this->nelem (); for (octave_idx_type i = 0; i < nel; i++) { T val = this->elem (i); if (val != 0.0 && val != 1.0) return true; } return false; } template <class T> intNDArray<T> intNDArray<T>::diag (void) const { return diag (0); } template <class T> intNDArray<T> intNDArray<T>::diag (octave_idx_type k) const { dim_vector dv = this->dims (); octave_idx_type nd = dv.length (); if (nd > 2) { (*current_liboctave_error_handler) ("Matrix must be 2-dimensional"); return intNDArray<T>(); } else { octave_idx_type nnr = dv (0); octave_idx_type nnc = dv (1); if (k > 0) nnc -= k; else if (k < 0) nnr += k; intNDArray<T> d; if (nnr > 0 && nnc > 0) { octave_idx_type ndiag = (nnr < nnc) ? nnr : nnc; d.resize (dim_vector (ndiag, 1)); if (k > 0) { for (octave_idx_type i = 0; i < ndiag; i++) d.xelem (i) = this->elem (i, i+k); } else if (k < 0) { for (octave_idx_type i = 0; i < ndiag; i++) d.xelem (i) = this->elem (i-k, i); } else { for (octave_idx_type i = 0; i < ndiag; i++) d.xelem (i) = this->elem (i, i); } } else (*current_liboctave_error_handler) ("diag: requested diagonal out of range"); return d; } } // FIXME -- this is not quite the right thing. template <class T> boolNDArray intNDArray<T>::all (int dim) const { MX_ND_ANY_ALL_REDUCTION (MX_ND_ALL_EVAL (this->elem (iter_idx) == T (0)), true); } template <class T> boolNDArray intNDArray<T>::any (int dim) const { MX_ND_ANY_ALL_REDUCTION (MX_ND_ANY_EVAL (this->elem (iter_idx) != T (0)), false); } template <class T> void intNDArray<T>::increment_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions, int start_dimension) { ::increment_index (ra_idx, dimensions, start_dimension); } template <class T> octave_idx_type intNDArray<T>::compute_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions) { return ::compute_index (ra_idx, dimensions); } template <class T> intNDArray<T> intNDArray<T>::concat (const intNDArray<T>& rb, const Array<octave_idx_type>& ra_idx) { if (rb.numel () > 0) insert (rb, ra_idx); return *this; } template <class T> intNDArray<T>& intNDArray<T>::insert (const intNDArray<T>& a, octave_idx_type r, octave_idx_type c) { Array<T>::insert (a, r, c); return *this; } template <class T> intNDArray<T>& intNDArray<T>::insert (const intNDArray<T>& a, const Array<octave_idx_type>& ra_idx) { Array<T>::insert (a, ra_idx); return *this; } // This contains no information on the array structure !!! template <class T> std::ostream& operator << (std::ostream& os, const intNDArray<T>& a) { octave_idx_type nel = a.nelem (); for (octave_idx_type i = 0; i < nel; i++) os << " " << a.elem (i) << "\n"; return os; } template <class T> std::istream& operator >> (std::istream& is, intNDArray<T>& a) { octave_idx_type nel = a.nelem (); if (nel < 1 ) is.clear (std::ios::badbit); else { T tmp; for (octave_idx_type i = 0; i < nel; i++) { is >> tmp; if (is) a.elem (i) = tmp; else goto done; } } done: return is; } template <class T> intNDArray<T> intNDArray<T>::sum (int dim) const { MX_ND_REDUCTION (retval(result_idx) += intNDArray<T>::elem (iter_idx), 0, intNDArray<T>); } template <class T> intNDArray<T> intNDArray<T>::max (int dim) const { ArrayN<octave_idx_type> dummy_idx; return max (dummy_idx, dim); } template <class T> intNDArray<T> intNDArray<T>::max (ArrayN<octave_idx_type>& idx_arg, int dim) const { dim_vector dv = this->dims (); dim_vector dr = this->dims (); if (dv.numel () == 0 || dim > dv.length () || dim < 0) return intNDArray<T> (); dr(dim) = 1; intNDArray<T> result (dr); idx_arg.resize (dr); octave_idx_type x_stride = 1; octave_idx_type x_len = dv(dim); for (int i = 0; i < dim; i++) x_stride *= dv(i); for (octave_idx_type i = 0; i < dr.numel (); i++) { octave_idx_type x_offset; if (x_stride == 1) x_offset = i * x_len; else { octave_idx_type x_offset2 = 0; x_offset = i; while (x_offset >= x_stride) { x_offset -= x_stride; x_offset2++; } x_offset += x_offset2 * x_stride * x_len; } octave_idx_type idx_j = 0; T tmp_max = this->elem (x_offset); for (octave_idx_type j = 1; j < x_len; j++) { T tmp = this->elem (j * x_stride + x_offset); if (tmp > tmp_max) { idx_j = j; tmp_max = tmp; } } result.elem (i) = tmp_max; idx_arg.elem (i) = idx_j; } result.chop_trailing_singletons (); idx_arg.chop_trailing_singletons (); return result; } template <class T> intNDArray<T> intNDArray<T>::min (int dim) const { ArrayN<octave_idx_type> dummy_idx; return min (dummy_idx, dim); } template <class T> intNDArray<T> intNDArray<T>::min (ArrayN<octave_idx_type>& idx_arg, int dim) const { dim_vector dv = this->dims (); dim_vector dr = this->dims (); if (dv.numel () == 0 || dim > dv.length () || dim < 0) return intNDArray<T> (); dr(dim) = 1; intNDArray<T> result (dr); idx_arg.resize (dr); octave_idx_type x_stride = 1; octave_idx_type x_len = dv(dim); for (int i = 0; i < dim; i++) x_stride *= dv(i); for (octave_idx_type i = 0; i < dr.numel (); i++) { octave_idx_type x_offset; if (x_stride == 1) x_offset = i * x_len; else { octave_idx_type x_offset2 = 0; x_offset = i; while (x_offset >= x_stride) { x_offset -= x_stride; x_offset2++; } x_offset += x_offset2 * x_stride * x_len; } octave_idx_type idx_j = 0; T tmp_min = this->elem (x_offset); for (octave_idx_type j = 1; j < x_len; j++) { T tmp = this->elem (j * x_stride + x_offset); if (tmp < tmp_min) { idx_j = j; tmp_min = tmp; } } result.elem (i) = tmp_min; idx_arg.elem (i) = idx_j; } result.chop_trailing_singletons (); idx_arg.chop_trailing_singletons (); return result; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */