view scripts/general/cell2mat.m @ 18754:0ede4dbb37f1

Overhaul interp1, interp2, interp3 functions. * NEWS: Announce change in 'cubic' interpolation method for interp2 to match Matlab. * bicubic.m: Use interp2 (..., "spline") in %!tests. * interp1.m: Improve docstring. Use switch statement instead of if/elseif tree for simpler code. Use more informative error message than 'table too short'. Add titles to demo plots. Add new demo block showing difference between 'pchip' and 'spline' methods. * interp2.m: Rewrite docstring. Use variable 'extrap' instead of 'extrapval' to match documentation. Use clearer messages in error() calls. Make 'cubic' use the same algorithm as 'pchip' for Matlab compatibility. Use Octave coding conventions regarding spaces between variable and parenthesis. Added input validation tests. * interp3.m: Rewrite docstring. Use clearer messages in error() calls. Make 'cubic' use the same algorithm as 'pchip' for Matlab compatibility. Simplify input processing. Rewrite some %!tests for clarity. Added input validation tests.
author Rik <rik@octave.org>
date Sun, 30 Mar 2014 14:18:43 -0700
parents f24d5bd050d9
children 4197fc428c7d
line wrap: on
line source

## Copyright (C) 2005-2013 Laurent Mazet
## Copyright (C) 2010 Jaroslav Hajek
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{m} =} cell2mat (@var{c})
## Convert the cell array @var{c} into a matrix by concatenating all
## elements of @var{c} into a hyperrectangle.  Elements of @var{c} must
## be numeric, logical, or char matrices; or cell arrays; or structs; and
## @code{cat} must be able to concatenate them together.
## @seealso{mat2cell, num2cell}
## @end deftypefn

function m = cell2mat (c)

  if (nargin != 1)
    print_usage ();
  endif

  nb = numel (c);

  if (nb == 0)
    m = [];
  else
    if (! iscell (c))
      error ("cell2mat: C must be a cell array");
    endif

    ## Check first for valid matrix types
    valid = cellfun ("isnumeric", c);
    valid = cellfun ("islogical", c(! valid));
    valid = cellfun ("isclass", c(! valid), "char");
    if (! all (valid(:)))
      valid = cellfun ("isclass", c, "cell");
      if (! all (valid(:)))
        valid = cellfun ("isclass", c, "struct");
        if (! all (valid(:)))
          error ("cell2mat: wrong type elements or mixed cells, structs, and matrices");
        endif
      endif
    endif

    sz = size (c);
    if (all (cellfun ("numel", c)(:) == 1))
      ## Special case of all scalars
      m = reshape (cat (1, c{:}), sz);
    else

      ## The goal is to minimize the total number of cat() calls.
      ## The dimensions can be concatenated along in arbitrary order.
      ## The numbers of concatenations are:
      ## n / d1
      ## n / (d1 * d2)
      ## n / (d1 * d2 * d3)
      ## etc.
      ## This is minimized if d1 >= d2 >= d3...

      nd = ndims (c);
      [~, isz] = sort (sz, "descend");
      for idim = isz
        if (sz(idim) == 1)
          continue;
        endif
        xdim = [1:idim-1, idim+1:nd];
        cc = num2cell (c, xdim);
        c = cellfun ("cat", {idim}, cc{:}, "uniformoutput", false);
      endfor
      m = c{1};

    endif
  endif

endfunction


%!demo
%! C = {[1], [2 3 4]; [5; 9], [6 7 8; 10 11 12]};
%! cell2mat (C)

%!assert (cell2mat ({}), []);
%!assert (cell2mat ([]), []);
%!test
%! C = {[1], [2 3 4]; [5; 9], [6 7 8; 10 11 12]};
%! D = C; D(:,:,2) = C;
%! E = [1 2 3 4; 5 6 7 8; 9 10 11 12];
%! F = E; F(:,:,2) = E;
%! assert (cell2mat (C), E);
%! assert (cell2mat (D), F);
%!test
%! m = rand (10) + i * rand (10);
%! c = mat2cell (m, [1 2 3 4], [4 3 2 1]);
%! assert (cell2mat (c), m);
%!test
%! m = int8 (256*rand (4, 5, 6, 7, 8));
%! c = mat2cell (m, [1 2 1], [1 2 2], [3 1 1 1], [4 1 2], [3 1 4]);
%! assert (cell2mat (c), m);
%!test
%! m = {1, 2, 3};
%! assert (cell2mat (mat2cell (m, 1, [1 1 1])), m);

%!error cell2mat ()
%!error cell2mat (1,2)
%!error <C must be a cell array> cell2mat ([1,2])
%!error <mixed cells, structs, and matrices> cell2mat ({[1], struct()})
%!error <mixed cells, structs, and matrices> cell2mat ({[1], {1}})
%!error <mixed cells, structs, and matrices> cell2mat ({struct(), {1}})