view scripts/general/gradient.m @ 18754:0ede4dbb37f1

Overhaul interp1, interp2, interp3 functions. * NEWS: Announce change in 'cubic' interpolation method for interp2 to match Matlab. * bicubic.m: Use interp2 (..., "spline") in %!tests. * interp1.m: Improve docstring. Use switch statement instead of if/elseif tree for simpler code. Use more informative error message than 'table too short'. Add titles to demo plots. Add new demo block showing difference between 'pchip' and 'spline' methods. * interp2.m: Rewrite docstring. Use variable 'extrap' instead of 'extrapval' to match documentation. Use clearer messages in error() calls. Make 'cubic' use the same algorithm as 'pchip' for Matlab compatibility. Use Octave coding conventions regarding spaces between variable and parenthesis. Added input validation tests. * interp3.m: Rewrite docstring. Use clearer messages in error() calls. Make 'cubic' use the same algorithm as 'pchip' for Matlab compatibility. Simplify input processing. Rewrite some %!tests for clarity. Added input validation tests.
author Rik <rik@octave.org>
date Sun, 30 Mar 2014 14:18:43 -0700
parents d63878346099
children 4197fc428c7d
line wrap: on
line source

## Copyright (C) 2000-2013 Kai Habel
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{dx} =} gradient (@var{m})
## @deftypefnx {Function File} {[@var{dx}, @var{dy}, @var{dz}, @dots{}] =} gradient (@var{m})
## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{m}, @var{s})
## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{m}, @var{x}, @var{y}, @var{z}, @dots{})
## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{f}, @var{x0})
## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{s})
## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{x}, @var{y}, @dots{})
##
## Calculate the gradient of sampled data or a function.  If @var{m}
## is a vector, calculate the one-dimensional gradient of @var{m}.  If
## @var{m} is a matrix the gradient is calculated for each dimension.
##
## @code{[@var{dx}, @var{dy}] = gradient (@var{m})} calculates the one
## dimensional gradient for @var{x} and @var{y} direction if @var{m} is a
## matrix.  Additional return arguments can be use for multi-dimensional
## matrices.
##
## A constant spacing between two points can be provided by the
## @var{s} parameter.  If @var{s} is a scalar, it is assumed to be the spacing
## for all dimensions.
## Otherwise, separate values of the spacing can be supplied by
## the @var{x}, @dots{} arguments.  Scalar values specify an equidistant
## spacing.
## Vector values for the @var{x}, @dots{} arguments specify the coordinate for
## that
## dimension.  The length must match their respective dimension of @var{m}.
##
## At boundary points a linear extrapolation is applied.  Interior points
## are calculated with the first approximation of the numerical gradient
##
## @example
## y'(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).
## @end example
##
## If the first argument @var{f} is a function handle, the gradient of the
## function at the points in @var{x0} is approximated using central
## difference.  For example, @code{gradient (@@cos, 0)} approximates the
## gradient of the cosine function in the point @math{x0 = 0}.  As with
## sampled data, the spacing values between the points from which the
## gradient is estimated can be set via the @var{s} or @var{dx},
## @var{dy}, @dots{} arguments.  By default a spacing of 1 is used.
## @seealso{diff, del2}
## @end deftypefn

## Author:  Kai Habel <kai.habel@gmx.de>
## Modified: David Bateman <dbateman@free.fr> Added NDArray support

function varargout = gradient (m, varargin)

  if (nargin < 1)
    print_usage ();
  endif

  nargout_with_ans = max (1,nargout);
  if (ismatrix (m))
    [varargout{1:nargout_with_ans}] = matrix_gradient (m, varargin{:});
  elseif (isa (m, "function_handle"))
    [varargout{1:nargout_with_ans}] = handle_gradient (m, varargin{:});
  elseif (ischar (m))
    [varargout{1:nargout_with_ans}] = handle_gradient (str2func (m), varargin{:});
  else
    error ("gradient: first input must be an array or a function");
  endif

endfunction

function varargout = matrix_gradient (m, varargin)
  transposed = false;
  if (isvector (m))
    ## make a row vector.
    transposed = (columns (m) == 1);
    m = m(:).';
  endif

  nd = ndims (m);
  sz = size (m);
  if (length (sz) > 1)
    tmp = sz(1); sz(1) = sz(2); sz(2) = tmp;
  endif

  if (nargin > 2 && nargin != nd + 1)
    print_usage ();
  endif

  ## cell d stores a spacing vector for each dimension
  d = cell (1, nd);
  if (nargin == 1)
    ## no spacing given - assume 1.0 for all dimensions
    for i = 1:nd
      d{i} = ones (sz(i) - 1, 1);
    endfor
  elseif (nargin == 2)
    if (isscalar (varargin{1}))
      ## single scalar value for all dimensions
      for i = 1:nd
        d{i} = varargin{1} * ones (sz(i) - 1, 1);
      endfor
    else
      ## vector for one-dimensional derivative
      d{1} = diff (varargin{1}(:));
    endif
  else
    ## have spacing value for each dimension
    if (length(varargin) != nd)
      error ("gradient: dimensions and number of spacing values do not match");
    endif
    for i = 1:nd
      if (isscalar (varargin{i}))
        d{i} = varargin{i} * ones (sz(i) - 1, 1);
      else
        d{i} = diff (varargin{i}(:));
      endif
    endfor
  endif

  m = shiftdim (m, 1);
  for i = 1:min (nd, nargout)
    mr = rows (m);
    mc = numel (m) / mr;
    Y = zeros (size (m), class (m));

    if (mr > 1)
      ## Top and bottom boundary.
      Y(1,:) = diff (m(1:2, :)) / d{i}(1);
      Y(mr,:) = diff (m(mr-1:mr, :) / d{i}(mr - 1));
    endif

    if (mr > 2)
      ## Interior points.
      Y(2:mr-1,:) = ((m(3:mr,:) - m(1:mr-2,:))
          ./ kron (d{i}(1:mr-2) + d{i}(2:mr-1), ones (1, mc)));
    endif

    ## turn multi-dimensional matrix in a way, that gradient
    ## along x-direction is calculated first then y, z, ...

    if (i == 1)
      varargout{i} = shiftdim (Y, nd - 1);
      m = shiftdim (m, nd - 1);
    elseif (i == 2)
      varargout{i} = Y;
      m = shiftdim (m, 2);
    else
      varargout{i} = shiftdim (Y, nd - i + 1);
      m = shiftdim (m, 1);
    endif
  endfor

  if (transposed)
    varargout{1} = varargout{1}.';
  endif
endfunction

function varargout = handle_gradient (f, p0, varargin)
  ## Input checking
  p0_size = size (p0);

  if (numel (p0_size) != 2)
    error ("gradient: the second input argument should either be a vector or a matrix");
  endif

  if (any (p0_size == 1))
    p0 = p0 (:);
    dim = 1;
    num_points = numel (p0);
  else
    num_points = p0_size (1);
    dim = p0_size (2);
  endif

  if (length (varargin) == 0)
    delta = 1;
  elseif (length (varargin) == 1 || length (varargin) == dim)
    try
      delta = [varargin{:}];
    catch
      error ("gradient: spacing parameters must be scalars or a vector");
    end_try_catch
  else
    error ("gradient: incorrect number of spacing parameters");
  endif

  if (isscalar (delta))
    delta = repmat (delta, 1, dim);
  elseif (!isvector (delta))
    error ("gradient: spacing values must be scalars or a vector");
  endif

  ## Calculate the gradient
  p0 = mat2cell (p0, num_points, ones (1, dim));
  varargout = cell (1, dim);
  for d = 1:dim
    s = delta (d);
    df_dx = (f (p0{1:d-1}, p0{d}+s, p0{d+1:end})
           - f (p0{1:d-1}, p0{d}-s, p0{d+1:end})) ./ (2*s);
    if (dim == 1)
      varargout{d} = reshape (df_dx, p0_size);
    else
      varargout{d} = df_dx;
    endif
  endfor
endfunction


%!test
%! data = [1, 2, 4, 2];
%! dx = gradient (data);
%! dx2 = gradient (data, 0.25);
%! dx3 = gradient (data, [0.25, 0.5, 1, 3]);
%! assert (dx, [1, 3/2, 0, -2]);
%! assert (dx2, [4, 6, 0, -8]);
%! assert (dx3, [4, 4, 0, -1]);
%! assert (size_equal (data, dx));

%!test
%! [Y,X,Z,U] = ndgrid (2:2:8,1:5,4:4:12,3:5:30);
%! [dX,dY,dZ,dU] = gradient (X);
%! assert (all (dX(:) == 1));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Y);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 2));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Z);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 4));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (U);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 5));
%! assert (size_equal (dX, dY, dZ, dU, X, Y, Z, U));
%! [dX,dY,dZ,dU] = gradient (U, 5.0);
%! assert (all (dU(:) == 1));
%! [dX,dY,dZ,dU] = gradient (U, 1.0, 2.0, 3.0, 2.5);
%! assert (all (dU(:) == 2));

%!test
%! [Y,X,Z,U] = ndgrid (2:2:8,1:5,4:4:12,3:5:30);
%! [dX,dY,dZ,dU] = gradient (X+j*X);
%! assert (all (dX(:) == 1+1j));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Y-j*Y);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 2-j*2));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (Z+j*1);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 4));
%! assert (all (dU(:) == 0));
%! [dX,dY,dZ,dU] = gradient (U-j*1);
%! assert (all (dX(:) == 0));
%! assert (all (dY(:) == 0));
%! assert (all (dZ(:) == 0));
%! assert (all (dU(:) == 5));
%! assert (size_equal (dX, dY, dZ, dU, X, Y, Z, U));
%! [dX,dY,dZ,dU] = gradient (U, 5.0);
%! assert (all (dU(:) == 1));
%! [dX,dY,dZ,dU] = gradient (U, 1.0, 2.0, 3.0, 2.5);
%! assert (all (dU(:) == 2));

%!test
%! x = 0:10;
%! f = @cos;
%! df_dx = @(x) -sin (x);
%! assert (gradient (f, x), df_dx (x), 0.2);
%! assert (gradient (f, x, 0.5), df_dx (x), 0.1);

%!test
%! xy = reshape (1:10, 5, 2);
%! f = @(x,y) sin (x) .* cos (y);
%! df_dx = @(x, y) cos (x) .* cos (y);
%! df_dy = @(x, y) -sin (x) .* sin (y);
%! [dx, dy] = gradient (f, xy);
%! assert (dx, df_dx (xy (:, 1), xy (:, 2)), 0.1)
%! assert (dy, df_dy (xy (:, 1), xy (:, 2)), 0.1)