Mercurial > hg > octave-nkf
view scripts/general/gradient.m @ 18754:0ede4dbb37f1
Overhaul interp1, interp2, interp3 functions.
* NEWS: Announce change in 'cubic' interpolation method for interp2
to match Matlab.
* bicubic.m: Use interp2 (..., "spline") in %!tests.
* interp1.m: Improve docstring. Use switch statement instead of if/elseif tree
for simpler code. Use more informative error message than 'table too short'.
Add titles to demo plots. Add new demo block showing difference between 'pchip'
and 'spline' methods.
* interp2.m: Rewrite docstring. Use variable 'extrap' instead of 'extrapval' to
match documentation. Use clearer messages in error() calls. Make 'cubic' use
the same algorithm as 'pchip' for Matlab compatibility. Use Octave coding
conventions regarding spaces between variable and parenthesis. Added input
validation tests.
* interp3.m: Rewrite docstring. Use clearer messages in error() calls. Make
'cubic' use the same algorithm as 'pchip' for Matlab compatibility. Simplify
input processing. Rewrite some %!tests for clarity. Added input validation
tests.
author | Rik <rik@octave.org> |
---|---|
date | Sun, 30 Mar 2014 14:18:43 -0700 |
parents | d63878346099 |
children | 4197fc428c7d |
line wrap: on
line source
## Copyright (C) 2000-2013 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{dx} =} gradient (@var{m}) ## @deftypefnx {Function File} {[@var{dx}, @var{dy}, @var{dz}, @dots{}] =} gradient (@var{m}) ## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{m}, @var{s}) ## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{m}, @var{x}, @var{y}, @var{z}, @dots{}) ## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{f}, @var{x0}) ## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{s}) ## @deftypefnx {Function File} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{x}, @var{y}, @dots{}) ## ## Calculate the gradient of sampled data or a function. If @var{m} ## is a vector, calculate the one-dimensional gradient of @var{m}. If ## @var{m} is a matrix the gradient is calculated for each dimension. ## ## @code{[@var{dx}, @var{dy}] = gradient (@var{m})} calculates the one ## dimensional gradient for @var{x} and @var{y} direction if @var{m} is a ## matrix. Additional return arguments can be use for multi-dimensional ## matrices. ## ## A constant spacing between two points can be provided by the ## @var{s} parameter. If @var{s} is a scalar, it is assumed to be the spacing ## for all dimensions. ## Otherwise, separate values of the spacing can be supplied by ## the @var{x}, @dots{} arguments. Scalar values specify an equidistant ## spacing. ## Vector values for the @var{x}, @dots{} arguments specify the coordinate for ## that ## dimension. The length must match their respective dimension of @var{m}. ## ## At boundary points a linear extrapolation is applied. Interior points ## are calculated with the first approximation of the numerical gradient ## ## @example ## y'(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)). ## @end example ## ## If the first argument @var{f} is a function handle, the gradient of the ## function at the points in @var{x0} is approximated using central ## difference. For example, @code{gradient (@@cos, 0)} approximates the ## gradient of the cosine function in the point @math{x0 = 0}. As with ## sampled data, the spacing values between the points from which the ## gradient is estimated can be set via the @var{s} or @var{dx}, ## @var{dy}, @dots{} arguments. By default a spacing of 1 is used. ## @seealso{diff, del2} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Modified: David Bateman <dbateman@free.fr> Added NDArray support function varargout = gradient (m, varargin) if (nargin < 1) print_usage (); endif nargout_with_ans = max (1,nargout); if (ismatrix (m)) [varargout{1:nargout_with_ans}] = matrix_gradient (m, varargin{:}); elseif (isa (m, "function_handle")) [varargout{1:nargout_with_ans}] = handle_gradient (m, varargin{:}); elseif (ischar (m)) [varargout{1:nargout_with_ans}] = handle_gradient (str2func (m), varargin{:}); else error ("gradient: first input must be an array or a function"); endif endfunction function varargout = matrix_gradient (m, varargin) transposed = false; if (isvector (m)) ## make a row vector. transposed = (columns (m) == 1); m = m(:).'; endif nd = ndims (m); sz = size (m); if (length (sz) > 1) tmp = sz(1); sz(1) = sz(2); sz(2) = tmp; endif if (nargin > 2 && nargin != nd + 1) print_usage (); endif ## cell d stores a spacing vector for each dimension d = cell (1, nd); if (nargin == 1) ## no spacing given - assume 1.0 for all dimensions for i = 1:nd d{i} = ones (sz(i) - 1, 1); endfor elseif (nargin == 2) if (isscalar (varargin{1})) ## single scalar value for all dimensions for i = 1:nd d{i} = varargin{1} * ones (sz(i) - 1, 1); endfor else ## vector for one-dimensional derivative d{1} = diff (varargin{1}(:)); endif else ## have spacing value for each dimension if (length(varargin) != nd) error ("gradient: dimensions and number of spacing values do not match"); endif for i = 1:nd if (isscalar (varargin{i})) d{i} = varargin{i} * ones (sz(i) - 1, 1); else d{i} = diff (varargin{i}(:)); endif endfor endif m = shiftdim (m, 1); for i = 1:min (nd, nargout) mr = rows (m); mc = numel (m) / mr; Y = zeros (size (m), class (m)); if (mr > 1) ## Top and bottom boundary. Y(1,:) = diff (m(1:2, :)) / d{i}(1); Y(mr,:) = diff (m(mr-1:mr, :) / d{i}(mr - 1)); endif if (mr > 2) ## Interior points. Y(2:mr-1,:) = ((m(3:mr,:) - m(1:mr-2,:)) ./ kron (d{i}(1:mr-2) + d{i}(2:mr-1), ones (1, mc))); endif ## turn multi-dimensional matrix in a way, that gradient ## along x-direction is calculated first then y, z, ... if (i == 1) varargout{i} = shiftdim (Y, nd - 1); m = shiftdim (m, nd - 1); elseif (i == 2) varargout{i} = Y; m = shiftdim (m, 2); else varargout{i} = shiftdim (Y, nd - i + 1); m = shiftdim (m, 1); endif endfor if (transposed) varargout{1} = varargout{1}.'; endif endfunction function varargout = handle_gradient (f, p0, varargin) ## Input checking p0_size = size (p0); if (numel (p0_size) != 2) error ("gradient: the second input argument should either be a vector or a matrix"); endif if (any (p0_size == 1)) p0 = p0 (:); dim = 1; num_points = numel (p0); else num_points = p0_size (1); dim = p0_size (2); endif if (length (varargin) == 0) delta = 1; elseif (length (varargin) == 1 || length (varargin) == dim) try delta = [varargin{:}]; catch error ("gradient: spacing parameters must be scalars or a vector"); end_try_catch else error ("gradient: incorrect number of spacing parameters"); endif if (isscalar (delta)) delta = repmat (delta, 1, dim); elseif (!isvector (delta)) error ("gradient: spacing values must be scalars or a vector"); endif ## Calculate the gradient p0 = mat2cell (p0, num_points, ones (1, dim)); varargout = cell (1, dim); for d = 1:dim s = delta (d); df_dx = (f (p0{1:d-1}, p0{d}+s, p0{d+1:end}) - f (p0{1:d-1}, p0{d}-s, p0{d+1:end})) ./ (2*s); if (dim == 1) varargout{d} = reshape (df_dx, p0_size); else varargout{d} = df_dx; endif endfor endfunction %!test %! data = [1, 2, 4, 2]; %! dx = gradient (data); %! dx2 = gradient (data, 0.25); %! dx3 = gradient (data, [0.25, 0.5, 1, 3]); %! assert (dx, [1, 3/2, 0, -2]); %! assert (dx2, [4, 6, 0, -8]); %! assert (dx3, [4, 4, 0, -1]); %! assert (size_equal (data, dx)); %!test %! [Y,X,Z,U] = ndgrid (2:2:8,1:5,4:4:12,3:5:30); %! [dX,dY,dZ,dU] = gradient (X); %! assert (all (dX(:) == 1)); %! assert (all (dY(:) == 0)); %! assert (all (dZ(:) == 0)); %! assert (all (dU(:) == 0)); %! [dX,dY,dZ,dU] = gradient (Y); %! assert (all (dX(:) == 0)); %! assert (all (dY(:) == 2)); %! assert (all (dZ(:) == 0)); %! assert (all (dU(:) == 0)); %! [dX,dY,dZ,dU] = gradient (Z); %! assert (all (dX(:) == 0)); %! assert (all (dY(:) == 0)); %! assert (all (dZ(:) == 4)); %! assert (all (dU(:) == 0)); %! [dX,dY,dZ,dU] = gradient (U); %! assert (all (dX(:) == 0)); %! assert (all (dY(:) == 0)); %! assert (all (dZ(:) == 0)); %! assert (all (dU(:) == 5)); %! assert (size_equal (dX, dY, dZ, dU, X, Y, Z, U)); %! [dX,dY,dZ,dU] = gradient (U, 5.0); %! assert (all (dU(:) == 1)); %! [dX,dY,dZ,dU] = gradient (U, 1.0, 2.0, 3.0, 2.5); %! assert (all (dU(:) == 2)); %!test %! [Y,X,Z,U] = ndgrid (2:2:8,1:5,4:4:12,3:5:30); %! [dX,dY,dZ,dU] = gradient (X+j*X); %! assert (all (dX(:) == 1+1j)); %! assert (all (dY(:) == 0)); %! assert (all (dZ(:) == 0)); %! assert (all (dU(:) == 0)); %! [dX,dY,dZ,dU] = gradient (Y-j*Y); %! assert (all (dX(:) == 0)); %! assert (all (dY(:) == 2-j*2)); %! assert (all (dZ(:) == 0)); %! assert (all (dU(:) == 0)); %! [dX,dY,dZ,dU] = gradient (Z+j*1); %! assert (all (dX(:) == 0)); %! assert (all (dY(:) == 0)); %! assert (all (dZ(:) == 4)); %! assert (all (dU(:) == 0)); %! [dX,dY,dZ,dU] = gradient (U-j*1); %! assert (all (dX(:) == 0)); %! assert (all (dY(:) == 0)); %! assert (all (dZ(:) == 0)); %! assert (all (dU(:) == 5)); %! assert (size_equal (dX, dY, dZ, dU, X, Y, Z, U)); %! [dX,dY,dZ,dU] = gradient (U, 5.0); %! assert (all (dU(:) == 1)); %! [dX,dY,dZ,dU] = gradient (U, 1.0, 2.0, 3.0, 2.5); %! assert (all (dU(:) == 2)); %!test %! x = 0:10; %! f = @cos; %! df_dx = @(x) -sin (x); %! assert (gradient (f, x), df_dx (x), 0.2); %! assert (gradient (f, x, 0.5), df_dx (x), 0.1); %!test %! xy = reshape (1:10, 5, 2); %! f = @(x,y) sin (x) .* cos (y); %! df_dx = @(x, y) cos (x) .* cos (y); %! df_dy = @(x, y) -sin (x) .* sin (y); %! [dx, dy] = gradient (f, xy); %! assert (dx, df_dx (xy (:, 1), xy (:, 2)), 0.1) %! assert (dy, df_dy (xy (:, 1), xy (:, 2)), 0.1)