Mercurial > hg > octave-nkf
view scripts/general/pol2cart.m @ 18754:0ede4dbb37f1
Overhaul interp1, interp2, interp3 functions.
* NEWS: Announce change in 'cubic' interpolation method for interp2
to match Matlab.
* bicubic.m: Use interp2 (..., "spline") in %!tests.
* interp1.m: Improve docstring. Use switch statement instead of if/elseif tree
for simpler code. Use more informative error message than 'table too short'.
Add titles to demo plots. Add new demo block showing difference between 'pchip'
and 'spline' methods.
* interp2.m: Rewrite docstring. Use variable 'extrap' instead of 'extrapval' to
match documentation. Use clearer messages in error() calls. Make 'cubic' use
the same algorithm as 'pchip' for Matlab compatibility. Use Octave coding
conventions regarding spaces between variable and parenthesis. Added input
validation tests.
* interp3.m: Rewrite docstring. Use clearer messages in error() calls. Make
'cubic' use the same algorithm as 'pchip' for Matlab compatibility. Simplify
input processing. Rewrite some %!tests for clarity. Added input validation
tests.
author | Rik <rik@octave.org> |
---|---|
date | Sun, 30 Mar 2014 14:18:43 -0700 |
parents | d63878346099 |
children | 4197fc428c7d |
line wrap: on
line source
## Copyright (C) 2000-2013 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{x}, @var{y}] =} pol2cart (@var{theta}, @var{r}) ## @deftypefnx {Function File} {[@var{x}, @var{y}, @var{z}] =} pol2cart (@var{theta}, @var{r}, @var{z}) ## @deftypefnx {Function File} {[@var{x}, @var{y}] =} pol2cart (@var{P}) ## @deftypefnx {Function File} {[@var{x}, @var{y}, @var{z}] =} pol2cart (@var{P}) ## @deftypefnx {Function File} {@var{C} =} pol2cart (@dots{}) ## Transform polar or cylindrical to Cartesian coordinates. ## ## @var{theta}, @var{r}, (and @var{z}) must be the same shape, or scalar. ## @var{theta} describes the angle relative to the positive x-axis. ## @var{r} is the distance to the z-axis (0, 0, z). ## If called with a single matrix argument then each row of @var{P} ## represents the polar/(cylindrical) coordinate (@var{theta}, @var{r} (, ## @var{z})). ## ## If only a single return argument is requested then return a matrix ## @var{C} where each row represents one Cartesian coordinate ## (@var{x}, @var{y} (, @var{z})). ## @seealso{cart2pol, sph2cart, cart2sph} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Adapted-by: jwe function [x, y, z] = pol2cart (theta, r, z = []) if (nargin < 1 || nargin > 3) print_usage (); endif if (nargin == 1) if (ismatrix (theta) && (columns (theta) == 2 || columns (theta) == 3)) if (columns (theta) == 3) z = theta(:,3); endif r = theta(:,2); theta = theta(:,1); else error ("pol2cart: matrix input must have 2 or 3 columns [THETA, R (, Z)]"); endif elseif (nargin == 2) if (! ((ismatrix (theta) && ismatrix (r)) && (size_equal (theta, r) || isscalar (theta) || isscalar (r)))) error ("pol2cart: arguments must be matrices of same size, or scalar"); endif elseif (nargin == 3) if (! ((ismatrix (theta) && ismatrix (r) && ismatrix (z)) && (size_equal (theta, r) || isscalar (theta) || isscalar (r)) && (size_equal (theta, z) || isscalar (theta) || isscalar (z)) && (size_equal (r, z) || isscalar (r) || isscalar (z)))) error ("pol2cart: arguments must be matrices of same size, or scalar"); endif endif x = r .* cos (theta); y = r .* sin (theta); if (nargout <= 1) x = [x(:), y(:), z(:)]; endif endfunction %!test %! t = [0, 0.5, 1] * pi; %! r = 1; %! [x, y] = pol2cart (t, r); %! assert (x, [1, 0, -1], sqrt (eps)); %! assert (y, [0, 1, 0], sqrt (eps)); %!test %! t = [0, 1, 1] * pi/4; %! r = sqrt (2) * [0, 1, 2]; %! C = pol2cart (t, r); %! assert (C(:,1), [0; 1; 2], sqrt (eps)); %! assert (C(:,2), [0; 1; 2], sqrt (eps)); %!test %! t = [0, 1, 1] * pi/4; %! r = sqrt (2) * [0, 1, 2]; %! z = [0, 1, 2]; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [0, 1, 2], sqrt (eps)); %! assert (y, [0, 1, 2], sqrt (eps)); %! assert (z, z2); %!test %! t = 0; %! r = [0, 1, 2]; %! z = [0, 1, 2]; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [0, 1, 2], sqrt (eps)); %! assert (y, [0, 0, 0], sqrt (eps)); %! assert (z, z2); %!test %! t = [1, 1, 1]*pi/4; %! r = 1; %! z = [0, 1, 2]; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [1, 1, 1] / sqrt (2), eps); %! assert (y, [1, 1, 1] / sqrt (2), eps); %! assert (z, z2); %!test %! t = 0; %! r = [1, 2, 3]; %! z = 1; %! [x, y, z2] = pol2cart (t, r, z); %! assert (x, [1, 2, 3], eps); %! assert (y, [0, 0, 0] / sqrt (2), eps); %! assert (z, z2); %!test %! P = [0, 0; pi/4, sqrt(2); pi/4, 2*sqrt(2)]; %! C = [0, 0; 1, 1; 2, 2]; %! assert (pol2cart (P), C, sqrt (eps)); %!test %! P = [0, 0, 0; pi/4, sqrt(2), 1; pi/4, 2*sqrt(2), 2]; %! C = [0, 0, 0; 1, 1, 1; 2, 2, 2]; %! assert (pol2cart (P), C, sqrt (eps));