Mercurial > hg > octave-nkf
view scripts/general/sortrows.m @ 18754:0ede4dbb37f1
Overhaul interp1, interp2, interp3 functions.
* NEWS: Announce change in 'cubic' interpolation method for interp2
to match Matlab.
* bicubic.m: Use interp2 (..., "spline") in %!tests.
* interp1.m: Improve docstring. Use switch statement instead of if/elseif tree
for simpler code. Use more informative error message than 'table too short'.
Add titles to demo plots. Add new demo block showing difference between 'pchip'
and 'spline' methods.
* interp2.m: Rewrite docstring. Use variable 'extrap' instead of 'extrapval' to
match documentation. Use clearer messages in error() calls. Make 'cubic' use
the same algorithm as 'pchip' for Matlab compatibility. Use Octave coding
conventions regarding spaces between variable and parenthesis. Added input
validation tests.
* interp3.m: Rewrite docstring. Use clearer messages in error() calls. Make
'cubic' use the same algorithm as 'pchip' for Matlab compatibility. Simplify
input processing. Rewrite some %!tests for clarity. Added input validation
tests.
author | Rik <rik@octave.org> |
---|---|
date | Sun, 30 Mar 2014 14:18:43 -0700 |
parents | d63878346099 |
children | 446c46af4b42 |
line wrap: on
line source
## Copyright (C) 2000-2013 Daniel Calvelo ## Copyright (C) 2009 Jaroslav Hajek ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{s}, @var{i}] =} sortrows (@var{A}) ## @deftypefnx {Function File} {[@var{s}, @var{i}] =} sortrows (@var{A}, @var{c}) ## Sort the rows of the matrix @var{A} according to the order of the ## columns specified in @var{c}. If @var{c} is omitted, a ## lexicographical sort is used. By default ascending order is used ## however if elements of @var{c} are negative then the corresponding ## column is sorted in descending order. ## @seealso{sort} ## @end deftypefn ## Author: Daniel Calvelo, Paul Kienzle ## Adapted-by: jwe function [s, i] = sortrows (A, c) if (nargin < 1 || nargin > 2) print_usage (); endif if (nargin == 2) if (! (isnumeric (c) && isvector (c))) error ("sortrows: C must be a numeric vector"); elseif (any (c == 0) || any (abs (c) > columns (A))) error ("sortrows: all elements of C must be in the range [1, columns (A)]"); endif endif default_mode = "ascend"; reverse_mode = "descend"; if (issparse (A)) ## FIXME: Eliminate this case once __sort_rows_idx__ is fixed to ## handle sparse matrices. if (nargin == 1) i = sort_rows_idx_generic (default_mode, reverse_mode, A); else i = sort_rows_idx_generic (default_mode, reverse_mode, A, c); endif elseif (nargin == 1) i = __sort_rows_idx__ (A, default_mode); elseif (all (c > 0)) i = __sort_rows_idx__ (A(:,c), default_mode); elseif (all (c < 0)) i = __sort_rows_idx__ (A(:,-c), reverse_mode); else ## Otherwise, fall back to the old algorithm. i = sort_rows_idx_generic (default_mode, reverse_mode, A, c); endif ## Only bother to compute s if needed. if (isargout (1)) s = A(i,:); endif endfunction function i = sort_rows_idx_generic (default_mode, reverse_mode, m, c) if (nargin == 3) indices = [1:columns(m)]'; mode(1:columns(m)) = {default_mode}; else for j = 1:length (c); if (c(j) < 0) mode{j} = reverse_mode; else mode{j} = default_mode; endif endfor indices = abs (c(:)); endif ## Since sort is 'stable' the order of identical elements will be ## preserved, so by traversing the sort indices in reverse order we ## will make sure that identical elements in index i are subsorted by ## index j. indices = flipud (indices); mode = flipud (mode'); i = [1:rows(m)]'; for j = 1:length (indices); [~, idx] = sort (m(i, indices(j)), mode{j}); i = i(idx); endfor endfunction %!test %! m = [1, 1; 1, 2; 3, 6; 2, 7]; %! c = [1, -2]; %! [x, idx] = sortrows (m, c); %! [sx, sidx] = sortrows (sparse (m), c); %! assert (x, [1, 2; 1, 1; 2, 7; 3, 6]); %! assert (idx, [2; 1; 4; 3]); %! assert (issparse (sx)); %! assert (x, full (sx)); %! assert (idx, sidx); %!test %! m = [1, 0, 0, 4]; %! c = 1; %! [x, idx] = sortrows (m, c); %! [sx, sidx] = sortrows (sparse (m), c); %! assert (x, m); %! assert (idx, 1); %! assert (issparse (sx)); %! assert (x, full (sx)); %! assert (idx, sidx); %% Test input validation %!error sortrows () %!error sortrows (1, 2, 3) %!error sortrows (1, "ascend") %!error sortrows (1, ones (2,2)) %!error sortrows (1, 0) %!error sortrows (1, 2)