Mercurial > hg > octave-nkf
view scripts/general/triplequad.m @ 18754:0ede4dbb37f1
Overhaul interp1, interp2, interp3 functions.
* NEWS: Announce change in 'cubic' interpolation method for interp2
to match Matlab.
* bicubic.m: Use interp2 (..., "spline") in %!tests.
* interp1.m: Improve docstring. Use switch statement instead of if/elseif tree
for simpler code. Use more informative error message than 'table too short'.
Add titles to demo plots. Add new demo block showing difference between 'pchip'
and 'spline' methods.
* interp2.m: Rewrite docstring. Use variable 'extrap' instead of 'extrapval' to
match documentation. Use clearer messages in error() calls. Make 'cubic' use
the same algorithm as 'pchip' for Matlab compatibility. Use Octave coding
conventions regarding spaces between variable and parenthesis. Added input
validation tests.
* interp3.m: Rewrite docstring. Use clearer messages in error() calls. Make
'cubic' use the same algorithm as 'pchip' for Matlab compatibility. Simplify
input processing. Rewrite some %!tests for clarity. Added input validation
tests.
author | Rik <rik@octave.org> |
---|---|
date | Sun, 30 Mar 2014 14:18:43 -0700 |
parents | d63878346099 |
children | 4197fc428c7d |
line wrap: on
line source
## Copyright (C) 2008-2013 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} triplequad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}) ## @deftypefnx {Function File} {} triplequad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}, @var{tol}) ## @deftypefnx {Function File} {} triplequad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}, @var{tol}, @var{quadf}) ## @deftypefnx {Function File} {} triplequad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}, @var{tol}, @var{quadf}, @dots{}) ## Numerically evaluate the triple integral of @var{f}. ## @var{f} is a function handle, inline function, or string ## containing the name of the function to evaluate. The function @var{f} must ## have the form @math{w = f(x,y,z)} where either @var{x} or @var{y} is a ## vector and the remaining inputs are scalars. It should return a vector of ## the same length and orientation as @var{x} or @var{y}. ## ## @var{xa}, @var{ya}, @var{za} and @var{xb}, @var{yb}, @var{zb} are the lower ## and upper limits of integration for x, y, and z respectively. The ## underlying integrator determines whether infinite bounds are accepted. ## ## The optional argument @var{tol} defines the absolute tolerance used to ## integrate each sub-integral. The default value is @math{1e^{-6}}. ## ## The optional argument @var{quadf} specifies which underlying integrator ## function to use. Any choice but @code{quad} is available and the default ## is @code{quadcc}. ## ## Additional arguments, are passed directly to @var{f}. To use the default ## value for @var{tol} or @var{quadf} one may pass @qcode{':'} or an empty ## matrix ([]). ## @seealso{dblquad, quad, quadv, quadl, quadgk, quadcc, trapz} ## @end deftypefn function q = triplequad (f, xa, xb, ya, yb, za, zb, tol = 1e-6, quadf = @quadcc, varargin) if (nargin < 7) print_usage (); endif ## Allow use of empty matrix ([]) to indicate default if (isempty (tol)) tol = 1e-6; endif if (isempty (quadf)) quadf = @quadcc; endif inner = @__triplequad_inner__; if (ischar (f)) f = @(x,y,z) feval (f, x, y, z, varargin{:}); varargin = {}; endif q = dblquad (@(y, z) inner (y, z, f, xa, xb, tol, quadf, varargin{:}), ya, yb, za, zb, tol); endfunction function q = __triplequad_inner__ (y, z, f, xa, xb, tol, quadf, varargin) q = zeros (size (y)); for i = 1 : length (y) q(i) = feval (quadf, @(x) f (x, y(i), z, varargin{:}), xa, xb, tol); endfor endfunction %!assert (triplequad (@(x,y,z) exp (-x.^2 - y.^2 - z.^2) , -1, 1, -1, 1, -1, 1, [], @quadcc), pi^(3/2) * erf (1).^3, 1e-6) %% These tests are too expensive to run normally (~30 sec each). Disable them #%!assert (triplequad (@(x,y,z) exp (-x.^2 - y.^2 - z.^2) , -1, 1, -1, 1, -1, 1, [], @quadgk), pi^(3/2) * erf (1).^3, 1e-6) #%!#assert (triplequad (@(x,y,z) exp (-x.^2 - y.^2 - z.^2) , -1, 1, -1, 1, -1, 1, [], @quadl), pi^(3/2) * erf (1).^3, 1e-6) #%!#assert (triplequad (@(x,y,z) exp (-x.^2 - y.^2 - z.^2) , -1, 1, -1, 1, -1, 1, [], @quadv), pi^(3/2) * erf (1).^3, 1e-6)