Mercurial > hg > octave-nkf
view scripts/general/issymmetric.m @ 9584:0fcbfddaa87f
allow abbreviated graphics property names to match, with optional warning
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 28 Aug 2009 05:30:29 -0400 |
parents | eb63fbe60fab |
children |
line wrap: on
line source
## Copyright (C) 1996, 1997, 2002, 2003, 2004, 2005, 2006, 2007, 2008 ## John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} issymmetric (@var{x}, @var{tol}) ## If @var{x} is symmetric within the tolerance specified by @var{tol}, ## then return the dimension of @var{x}. Otherwise, return 0. If ## @var{tol} is omitted, use a tolerance equal to the machine precision. ## Matrix @var{x} is considered symmetric if ## @code{norm (@var{x} - @var{x}.', inf) / norm (@var{x}, inf) < @var{tol}}. ## @seealso{size, rows, columns, length, ismatrix, isscalar, ## issquare, isvector} ## @end deftypefn ## Author: A. S. Hodel <scotte@eng.auburn.edu> ## Created: August 1993 ## Adapted-By: jwe function retval = issymmetric (x, tol) if (nargin == 1 || nargin == 2) retval = issquare (x); if (retval != 0) if (nargin == 1) if (isa (x, "single")) tol = eps("single"); else tol = eps; endif endif norm_x = norm (x, inf); if (norm_x != 0 && norm (x - x', inf) / norm_x > tol) retval = 0; endif endif else print_usage (); endif endfunction %!assert(issymmetric (1)); %!assert(!(issymmetric ([1, 2]))); %!assert(!(issymmetric ([]))); %!assert(issymmetric ([1, 2; 2, 1]) == 2); %!assert(!(issymmetric ("test"))); %!assert(issymmetric ([1, 2.1; 2, 1.1], 0.2) == 2); %!assert(issymmetric ([1, 2i; -2i, 1])); %!assert(!(issymmetric ("t"))); %!assert(!(issymmetric (["te"; "et"]))); %!error issymmetric ([1, 2; 2, 1], 0, 0); %!error issymmetric (); %!test %! s.a = 1; %! assert(!(issymmetric (s)));