view scripts/linear-algebra/commutation_matrix.m @ 16048:10142aad4b9f classdef

Implement indirect method call: fun(obj, ...). * libinterp/octave-value/ov-classdef.h (class cdef_manager): New class. (cdef_method::cdef_method_rep::meta_subsref, cdef_method::cdef_method_rep::meta_is_postfix_index_handled): New methods. * libinterp/octave-value/ov-classdef.cc (all_packages, all_classes): Move static variables to class cdef_manager. (lookup_class (std::string, bool, bool)): Move implementation to method cdef_manager::do_find_class(). (lookup_package): Move implementation to method cdef_manager::do_find_package(). (make_class): Use cdef_manager::register_class. (make_package): Use cdef_manager::register_package and cdef_manager::find_package. (cdef_class::cdef_class_rep::meta_release): Use cdef_manager::unregister_class. (cdef_method::cdef_method_rep::meta_subsref): New method. (class cdef_manager): New class. * libinterp/interpfcn/symtab.cc (symbol_table::fcn_info::fcn_info_rep::load_class_constructor): Look for classdef constructor in normal m-files. Call find_user_function() and check whether the result is a classdef constructor. If it is, stash it as a constructor and restore the previous value of function_on_path. (symbol_table::fcn_info::fcn_info_rep::load_class_method): Look for method in classdef system, using cdef_manager::find_method_symbol().
author Michael Goffioul <michael.goffioul@gmail.com>
date Mon, 11 Feb 2013 15:20:00 -0500
parents f3d52523cde1
children d63878346099
line wrap: on
line source

## Copyright (C) 1995-2012 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} commutation_matrix (@var{m}, @var{n})
## Return the commutation matrix
## @tex
##  $K_{m,n}$
## @end tex
## @ifnottex
##  K(m,n)
## @end ifnottex
##  which is the unique
## @tex
##  $m n \times m n$
## @end tex
## @ifnottex
##  @var{m}*@var{n} by @var{m}*@var{n}
## @end ifnottex
##  matrix such that
## @tex
##  $K_{m,n} \cdot {\rm vec} (A) = {\rm vec} (A^T)$
## @end tex
## @ifnottex
##  @math{K(m,n) * vec(A) = vec(A')}
## @end ifnottex
##  for all
## @tex
##  $m\times n$
## @end tex
## @ifnottex
##  @math{m} by @math{n}
## @end ifnottex
##  matrices
## @tex
##  $A$.
## @end tex
## @ifnottex
##  @math{A}.
## @end ifnottex
##
## If only one argument @var{m} is given,
## @tex
##  $K_{m,m}$
## @end tex
## @ifnottex
##  @math{K(m,m)}
## @end ifnottex
##  is returned.
##
## See Magnus and Neudecker (1988), @cite{Matrix Differential Calculus with
## Applications in Statistics and Econometrics.}
## @end deftypefn

## Author: KH <Kurt.Hornik@wu-wien.ac.at>
## Created: 8 May 1995
## Adapted-By: jwe

function k = commutation_matrix (m, n)

  if (nargin < 1 || nargin > 2)
    print_usage ();
  else
    if (! (isscalar (m) && m == fix (m) && m > 0))
      error ("commutation_matrix: M must be a positive integer");
    endif
    if (nargin == 1)
      n = m;
    elseif (! (isscalar (n) && n == fix (n) && n > 0))
      error ("commutation_matrix: N must be a positive integer");
    endif
  endif

  ## It is clearly possible to make this a LOT faster!
  k = zeros (m * n, m * n);
  for i = 1 : m
    for j = 1 : n
      k ((i - 1) * n + j, (j - 1) * m + i) = 1;
    endfor
  endfor

endfunction


%!test
%! c = commutation_matrix (1,1);
%! assert (c,1);

%!test
%! A = rand (3,5);
%! vc = vec (A);
%! vr = vec (A');
%! c = commutation_matrix (3,5);
%! assert (c*vc, vr);

%!test
%! A = rand (4,6);
%! vc = vec (A);
%! vr = vec (A');
%! c = commutation_matrix (4,6);
%! assert (c*vc, vr);

%!error <M must be a positive integer> commutation_matrix (0,0)
%!error <N must be a positive integer> commutation_matrix (1,0)
%!error <M must be a positive integer> commutation_matrix (0,1)