view scripts/polynomial/polyeig.m @ 16048:10142aad4b9f classdef

Implement indirect method call: fun(obj, ...). * libinterp/octave-value/ov-classdef.h (class cdef_manager): New class. (cdef_method::cdef_method_rep::meta_subsref, cdef_method::cdef_method_rep::meta_is_postfix_index_handled): New methods. * libinterp/octave-value/ov-classdef.cc (all_packages, all_classes): Move static variables to class cdef_manager. (lookup_class (std::string, bool, bool)): Move implementation to method cdef_manager::do_find_class(). (lookup_package): Move implementation to method cdef_manager::do_find_package(). (make_class): Use cdef_manager::register_class. (make_package): Use cdef_manager::register_package and cdef_manager::find_package. (cdef_class::cdef_class_rep::meta_release): Use cdef_manager::unregister_class. (cdef_method::cdef_method_rep::meta_subsref): New method. (class cdef_manager): New class. * libinterp/interpfcn/symtab.cc (symbol_table::fcn_info::fcn_info_rep::load_class_constructor): Look for classdef constructor in normal m-files. Call find_user_function() and check whether the result is a classdef constructor. If it is, stash it as a constructor and restore the previous value of function_on_path. (symbol_table::fcn_info::fcn_info_rep::load_class_method): Look for method in classdef system, using cdef_manager::find_method_symbol().
author Michael Goffioul <michael.goffioul@gmail.com>
date Mon, 11 Feb 2013 15:20:00 -0500
parents e3dc9ff8e0f2
children e39f00a32dc7
line wrap: on
line source

## Copyright (C) 2012 Fotios Kasolis
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{z} =} polyeig (@var{C0}, @var{C1}, @dots{}, @var{Cl})
## @deftypefnx {Function File} {[@var{v}, @var{z}] =} polyeig (@var{C0}, @var{C1}, @dots{}, @var{Cl})
##
## Solve the polynomial eigenvalue problem of degree @var{l}.
##
## Given an @var{n*n} matrix polynomial
## @code{@var{C}(s) = @var{C0} + @var{C1} s + @dots{} + @var{Cl} s^l}
## polyeig solves the eigenvalue problem
## @code{(@var{C0} + @var{C1} + @dots{} + @var{Cl})v = 0}.
## Note that the eigenvalues @var{z} are the zeros of the matrix polynomial.
## @var{z} is an @var{lxn} vector and @var{v} is an (@var{n} x @var{n})l matrix
## with columns that correspond to the eigenvectors.
##
## @seealso{eig, eigs, compan}
## @end deftypefn

## Author: Fotios Kasolis

function [ z, varargout ] = polyeig (varargin)
  
  if ( nargout > 2 )
    print_usage ();
  endif

  nin = numel (varargin);

  n = zeros (1, nin);

  for cnt = 1 : nin
    if ! ( issquare (varargin{cnt}) )
       error ("polyeig: coefficients must be square matrices");
    endif
    n(cnt) = size (varargin{cnt}, 1);
  endfor

  if numel (unique (n)) > 1
       error ("polyeig: coefficients must have the same dimensions");
  endif
  n = unique (n);

  ## matrix polynomial degree
  l = nin - 1;

  ## form needed matrices
  C = [ zeros(n * (l - 1), n), eye(n * (l - 1));
       -cell2mat(varargin(1 : end - 1)) ];

  D = [ eye(n * (l - 1)), zeros(n * (l - 1), n);
       zeros(n, n * (l - 1)), varargin{end} ];

  ## solve generalized eigenvalue problem
  if ( isequal (nargout, 1) )
    z = eig (C, D);
  else
    [ z, v ] = eig (C, D);
    varargout{1} = v;
    ## return n-element eigenvectors normalized so
    ## that the infinity-norm = 1
    z = z(1:n,:);
    ## max() takes the abs if complex:
    t = max (z);
    z /= diag (t);
  endif

endfunction

%!test
%! C0 = [8, 0; 0, 4]; C1 = [1, 0; 0, 1];
%! [v,z] = polyeig (C0, C1);
%! assert (isequal (z(1), -8), true);
%! d = C0*v + C1*v*z;
%! assert (isequal (norm(d), 0.0), true);