Mercurial > hg > octave-nkf
view scripts/linear-algebra/condest.m @ 14237:11949c9795a0
Revamp %!demos in m-files to use Octave coding conventions on spacing, etc.
Add clf() to all demos using plot features to get reproducibility.
Use 64 as input to all colormaps (jet (64)) to get reproducibility.
* bicubic.m, cell2mat.m, celldisp.m, cplxpair.m, interp1.m, interp2.m,
interpft.m, interpn.m, profile.m, profshow.m, convhull.m, delaunay.m,
griddata.m, inpolygon.m, voronoi.m, autumn.m, bone.m, contrast.m, cool.m,
copper.m, flag.m, gmap40.m, gray.m, hot.m, hsv.m, image.m, imshow.m, jet.m,
ocean.m, pink.m, prism.m, rainbow.m, spring.m, summer.m, white.m, winter.m,
condest.m, onenormest.m, axis.m, clabel.m, colorbar.m, comet.m, comet3.m,
compass.m, contour.m, contour3.m, contourf.m, cylinder.m, daspect.m,
ellipsoid.m, errorbar.m, ezcontour.m, ezcontourf.m, ezmesh.m, ezmeshc.m,
ezplot.m, ezplot3.m, ezpolar.m, ezsurf.m, ezsurfc.m, feather.m, fill.m,
fplot.m, grid.m, hold.m, isosurface.m, legend.m, loglog.m, loglogerr.m,
pareto.m, patch.m, pbaspect.m, pcolor.m, pie.m, pie3.m, plot3.m, plotmatrix.m,
plotyy.m, polar.m, quiver.m, quiver3.m, rectangle.m, refreshdata.m, ribbon.m,
rose.m, scatter.m, scatter3.m, semilogx.m, semilogxerr.m, semilogy.m,
semilogyerr.m, shading.m, slice.m, sombrero.m, stairs.m, stem.m, stem3.m,
subplot.m, surf.m, surfc.m, surfl.m, surfnorm.m, text.m, title.m, trimesh.m,
triplot.m, trisurf.m, uigetdir.m, uigetfile.m, uimenu.m, uiputfile.m,
waitbar.m, xlim.m, ylim.m, zlim.m, mkpp.m, pchip.m, polyaffine.m, spline.m,
bicgstab.m, cgs.m, gplot.m, pcg.m, pcr.m, treeplot.m, strtok.m, demo.m,
example.m, rundemos.m, speed.m, test.m, calendar.m, datestr.m, datetick.m,
weekday.m: Revamp %!demos to use Octave coding conventions on spacing, etc.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Fri, 20 Jan 2012 12:59:53 -0800 |
parents | 72c96de7a403 |
children | f3d52523cde1 |
line wrap: on
line source
## Copyright (C) 2007-2012 Regents of the University of California ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} condest (@var{A}) ## @deftypefnx {Function File} {} condest (@var{A}, @var{t}) ## @deftypefnx {Function File} {[@var{est}, @var{v}] =} condest (@dots{}) ## @deftypefnx {Function File} {[@var{est}, @var{v}] =} condest (@var{A}, @var{solve}, @var{solve_t}, @var{t}) ## @deftypefnx {Function File} {[@var{est}, @var{v}] =} condest (@var{apply}, @var{apply_t}, @var{solve}, @var{solve_t}, @var{n}, @var{t}) ## ## Estimate the 1-norm condition number of a matrix @var{A} ## using @var{t} test vectors using a randomized 1-norm estimator. ## If @var{t} exceeds 5, then only 5 test vectors are used. ## ## If the matrix is not explicit, e.g., when estimating the condition ## number of @var{A} given an LU@tie{}factorization, @code{condest} uses the ## following functions: ## ## @table @var ## @item apply ## @code{A*x} for a matrix @code{x} of size @var{n} by @var{t}. ## ## @item apply_t ## @code{A'*x} for a matrix @code{x} of size @var{n} by @var{t}. ## ## @item solve ## @code{A \ b} for a matrix @code{b} of size @var{n} by @var{t}. ## ## @item solve_t ## @code{A' \ b} for a matrix @code{b} of size @var{n} by @var{t}. ## @end table ## ## The implicit version requires an explicit dimension @var{n}. ## ## @code{condest} uses a randomized algorithm to approximate ## the 1-norms. ## ## @code{condest} returns the 1-norm condition estimate @var{est} and ## a vector @var{v} satisfying @code{norm (A*v, 1) == norm (A, 1) * norm ## (@var{v}, 1) / @var{est}}. When @var{est} is large, @var{v} is an ## approximate null vector. ## ## References: ## @itemize ## @item ## N.J. Higham and F. Tisseur, @cite{A Block Algorithm ## for Matrix 1-Norm Estimation, with an Application to 1-Norm ## Pseudospectra}. SIMAX vol 21, no 4, pp 1185-1201. ## @url{http://dx.doi.org/10.1137/S0895479899356080} ## ## @item ## N.J. Higham and F. Tisseur, @cite{A Block Algorithm ## for Matrix 1-Norm Estimation, with an Application to 1-Norm ## Pseudospectra}. @url{http://citeseer.ist.psu.edu/223007.html} ## @end itemize ## ## @seealso{cond, norm, onenormest} ## @end deftypefn ## Code originally licensed under ## ## Copyright (c) 2007, Regents of the University of California ## All rights reserved. ## ## Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions ## are met: ## ## * Redistributions of source code must retain the above copyright ## notice, this list of conditions and the following disclaimer. ## ## * Redistributions in binary form must reproduce the above ## copyright notice, this list of conditions and the following ## disclaimer in the documentation and/or other materials provided ## with the distribution. ## ## * Neither the name of the University of California, Berkeley nor ## the names of its contributors may be used to endorse or promote ## products derived from this software without specific prior ## written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' ## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ## TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ## PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND ## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF ## USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ## ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ## OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ## SUCH DAMAGE. ## Author: Jason Riedy <ejr@cs.berkeley.edu> ## Keywords: linear-algebra norm estimation ## Version: 0.2 function [est, v] = condest (varargin) if (nargin < 1 || nargin > 6) print_usage (); endif default_t = 5; have_A = false; have_t = false; have_solve = false; if (ismatrix (varargin{1})) A = varargin{1}; if (! issquare (A)) error ("condest: matrix must be square"); endif n = rows (A); have_A = true; if (nargin > 1) if (isscalar (varargin{2})) t = varargin{2}; have_t = true; elseif (nargin > 2) solve = varargin{2}; solve_t = varargin{3}; have_solve = true; if (nargin > 3) t = varargin{4}; have_t = true; endif else error ("condest: must supply both SOLVE and SOLVE_T"); endif endif elseif (nargin > 4) apply = varargin{1}; apply_t = varargin{2}; solve = varargin{3}; solve_t = varargin{4}; have_solve = true; n = varargin{5}; if (! isscalar (n)) error ("condest: dimension argument of implicit form must be scalar"); endif if (nargin > 5) t = varargin{6}; have_t = true; endif else error ("condest: implicit form of condest requires at least 5 arguments"); endif if (! have_t) t = min (n, default_t); endif if (! have_solve) if (issparse (A)) [L, U, P, Pc] = lu (A); solve = @(x) Pc' * (U \ (L \ (P * x))); solve_t = @(x) P' * (L' \ (U' \ (Pc * x))); else [L, U, P] = lu (A); solve = @(x) U \ (L \ (P*x)); solve_t = @(x) P' * (L' \ (U' \ x)); endif endif if (have_A) Anorm = norm (A, 1); else Anorm = onenormest (apply, apply_t, n, t); endif [Ainv_norm, v, w] = onenormest (solve, solve_t, n, t); est = Anorm * Ainv_norm; v = w / norm (w, 1); endfunction %!demo %! N = 100; %! A = randn (N) + eye (N); %! condest (A) %! [L,U,P] = lu (A); %! condest (A, @(x) U \ (L \ (P*x)), @(x) P'*(L' \ (U'\x))) %! condest (@(x) A*x, @(x) A'*x, @(x) U \ (L \ (P*x)), @(x) P'*(L' \ (U'\x)), N) %! norm (inv (A), 1) * norm (A, 1) ## Yes, these test bounds are really loose. There's ## enough randomization to trigger odd cases with hilb(). %!test %! N = 6; %! A = hilb (N); %! cA = condest (A); %! cA_test = norm (inv (A), 1) * norm (A, 1); %! assert (cA, cA_test, -2^-8); %!test %! N = 6; %! A = hilb (N); %! solve = @(x) A\x; solve_t = @(x) A'\x; %! cA = condest (A, solve, solve_t); %! cA_test = norm (inv (A), 1) * norm (A, 1); %! assert (cA, cA_test, -2^-8); %!test %! N = 6; %! A = hilb (N); %! apply = @(x) A*x; apply_t = @(x) A'*x; %! solve = @(x) A\x; solve_t = @(x) A'\x; %! cA = condest (apply, apply_t, solve, solve_t, N); %! cA_test = norm (inv (A), 1) * norm (A, 1); %! assert (cA, cA_test, -2^-6); %!test %! N = 12; %! A = hilb (N); %! [rcondA, v] = condest (A); %! x = A*v; %! assert (norm(x, inf), 0, eps);