Mercurial > hg > octave-nkf
view scripts/plot/slice.m @ 14237:11949c9795a0
Revamp %!demos in m-files to use Octave coding conventions on spacing, etc.
Add clf() to all demos using plot features to get reproducibility.
Use 64 as input to all colormaps (jet (64)) to get reproducibility.
* bicubic.m, cell2mat.m, celldisp.m, cplxpair.m, interp1.m, interp2.m,
interpft.m, interpn.m, profile.m, profshow.m, convhull.m, delaunay.m,
griddata.m, inpolygon.m, voronoi.m, autumn.m, bone.m, contrast.m, cool.m,
copper.m, flag.m, gmap40.m, gray.m, hot.m, hsv.m, image.m, imshow.m, jet.m,
ocean.m, pink.m, prism.m, rainbow.m, spring.m, summer.m, white.m, winter.m,
condest.m, onenormest.m, axis.m, clabel.m, colorbar.m, comet.m, comet3.m,
compass.m, contour.m, contour3.m, contourf.m, cylinder.m, daspect.m,
ellipsoid.m, errorbar.m, ezcontour.m, ezcontourf.m, ezmesh.m, ezmeshc.m,
ezplot.m, ezplot3.m, ezpolar.m, ezsurf.m, ezsurfc.m, feather.m, fill.m,
fplot.m, grid.m, hold.m, isosurface.m, legend.m, loglog.m, loglogerr.m,
pareto.m, patch.m, pbaspect.m, pcolor.m, pie.m, pie3.m, plot3.m, plotmatrix.m,
plotyy.m, polar.m, quiver.m, quiver3.m, rectangle.m, refreshdata.m, ribbon.m,
rose.m, scatter.m, scatter3.m, semilogx.m, semilogxerr.m, semilogy.m,
semilogyerr.m, shading.m, slice.m, sombrero.m, stairs.m, stem.m, stem3.m,
subplot.m, surf.m, surfc.m, surfl.m, surfnorm.m, text.m, title.m, trimesh.m,
triplot.m, trisurf.m, uigetdir.m, uigetfile.m, uimenu.m, uiputfile.m,
waitbar.m, xlim.m, ylim.m, zlim.m, mkpp.m, pchip.m, polyaffine.m, spline.m,
bicgstab.m, cgs.m, gplot.m, pcg.m, pcr.m, treeplot.m, strtok.m, demo.m,
example.m, rundemos.m, speed.m, test.m, calendar.m, datestr.m, datetick.m,
weekday.m: Revamp %!demos to use Octave coding conventions on spacing, etc.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Fri, 20 Jan 2012 12:59:53 -0800 |
parents | 72c96de7a403 |
children | c4fa5e0b6193 |
line wrap: on
line source
## Copyright (C) 2007-2012 Kai Habel, David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{sx}, @var{sy}, @var{sz}) ## @deftypefnx {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}) ## @deftypefnx {Function File} {} slice (@var{v}, @var{sx}, @var{sy}, @var{sz}) ## @deftypefnx {Function File} {} slice (@var{v}, @var{xi}, @var{yi}, @var{zi}) ## @deftypefnx {Function File} {@var{h} =} slice (@dots{}) ## @deftypefnx {Function File} {@var{h} =} slice (@dots{}, @var{method}) ## Plot slices of 3-D data/scalar fields. Each element of the 3-dimensional ## array @var{v} represents a scalar value at a location given by the ## parameters @var{x}, @var{y}, and @var{z}. The parameters @var{x}, ## @var{x}, and @var{z} are either 3-dimensional arrays of the same size ## as the array @var{v} in the "meshgrid" format or vectors. The ## parameters @var{xi}, etc. respect a similar format to @var{x}, etc., ## and they represent the points at which the array @var{vi} is ## interpolated using interp3. The vectors @var{sx}, @var{sy}, and ## @var{sz} contain points of orthogonal slices of the respective axes. ## ## If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be ## @code{x = 1:size (@var{v}, 2)}, @code{y = 1:size (@var{v}, 1)} and ## @code{z = 1:size (@var{v}, 3)}. ## ## @var{Method} is one of: ## ## @table @asis ## @item "nearest" ## Return the nearest neighbor. ## ## @item "linear" ## Linear interpolation from nearest neighbors. ## ## @item "cubic" ## Cubic interpolation from four nearest neighbors (not implemented yet). ## ## @item "spline" ## Cubic spline interpolation---smooth first and second derivatives ## throughout the curve. ## @end table ## ## The default method is @code{"linear"}. ## ## The optional return value @var{h} is a graphics handle to the created ## surface object. ## ## Examples: ## ## @example ## @group ## [x, y, z] = meshgrid (linspace (-8, 8, 32)); ## v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2)); ## slice (x, y, z, v, [], 0, []); ## [xi, yi] = meshgrid (linspace (-7, 7)); ## zi = xi + yi; ## slice (x, y, z, v, xi, yi, zi); ## @end group ## @end example ## @seealso{interp3, surface, pcolor} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> function h = slice (varargin) method = "linear"; nargs = nargin; if (ischar (varargin{end})) method = varargin{end}; nargs -= 1; endif if (nargs == 4) v = varargin{1}; if (ndims (v) != 3) error ("slice: expect 3-dimensional array of values"); endif [nx, ny, nz] = size (v); [x, y, z] = meshgrid (1:nx, 1:ny, 1:nz); sx = varargin{2}; sy = varargin{3}; sz = varargin{4}; elseif (nargs == 7) v = varargin{4}; if (ndims (v) != 3) error ("slice: expect 3-dimensional array of values"); endif x = varargin{1}; y = varargin{2}; z = varargin{3}; if (all ([isvector(x), isvector(y), isvector(z)])) [x, y, z] = meshgrid (x, y, z); elseif (ndims (x) == 3 && size_equal (x, y, z)) ## Do nothing. else error ("slice: X, Y, Z size mismatch"); endif sx = varargin{5}; sy = varargin{6}; sz = varargin{7}; else print_usage (); endif if (any ([isvector(sx), isvector(sy), isvector(sz)])) have_sval = true; elseif (ndims(sx) == 2 && size_equal (sx, sy, sz)) have_sval = false; else error ("slice: dimensional mismatch for (XI, YI, ZI) or (SX, SY, SZ)"); endif newplot (); ax = gca (); sidx = 1; maxv = max (v(:)); minv = min (v(:)); set (ax, "clim", [minv, maxv]); if (have_sval) ns = length (sx) + length (sy) + length (sz); hs = zeros(ns,1); [ny, nx, nz] = size (v); if (length(sz) > 0) for i = 1:length(sz) [xi, yi, zi] = meshgrid (squeeze (x(1,:,1)), squeeze (y(:,1,1)), sz(i)); vz = squeeze (interp3 (x, y, z, v, xi, yi, zi, method)); tmp(sidx++) = surface (xi, yi, sz(i) * ones (size (yi)), vz); endfor endif if (length (sy) > 0) for i = length(sy):-1:1 [xi, yi, zi] = meshgrid (squeeze (x(1,:,1)), sy(i), squeeze (z(1,1,:))); vy = squeeze (interp3 (x, y, z, v, xi, yi, zi, method)); tmp(sidx++) = surface (squeeze (xi), squeeze (sy(i) * ones (size (zi))), squeeze (zi), vy); endfor endif if (length (sx) > 0) for i = length(sx):-1:1 [xi, yi, zi] = meshgrid (sx(i), squeeze (y(:,1,1)), squeeze (z(1,1,:))); vx = squeeze (interp3 (x, y, z, v, xi, yi, zi, method)); tmp(sidx++) = surface (squeeze (sx(i) * ones (size (zi))), squeeze (yi), squeeze(zi), vx); endfor endif else vi = interp3 (x, y, z, v, sx, sy, sz); tmp = surface (sx, sy, sz, vi); endif if (! ishold ()) set (ax, "view", [-37.5, 30.0], "box", "off", "xgrid", "on", "ygrid", "on", "zgrid", "on"); endif if (nargout > 0) h = tmp; endif endfunction %!demo %! clf; %! [x, y, z] = meshgrid (linspace (-8, 8, 32)); %! v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2)); %! slice (x, y, z, v, [], 0, []); %!demo %! clf; %! [x, y, z] = meshgrid (linspace (-8, 8, 32)); %! v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2)); %! [xi, yi] = meshgrid (linspace (-7, 7)); %! zi = xi + yi; %! slice (x, y, z, v, xi, yi, zi);