Mercurial > hg > octave-nkf
view scripts/general/cart2pol.m @ 20798:128414587af2
don't print additional error message in argument list evaluation
* pt-arg-list.cc (tree_argument_list::convert_to_const_vector):
Don't call error for for failed argument evaluation.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 09 Oct 2015 16:52:49 -0400 |
parents | 7503499a252b |
children |
line wrap: on
line source
## Copyright (C) 2000-2015 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{theta}, @var{r}] =} cart2pol (@var{x}, @var{y}) ## @deftypefnx {Function File} {[@var{theta}, @var{r}, @var{z}] =} cart2pol (@var{x}, @var{y}, @var{z}) ## @deftypefnx {Function File} {[@var{theta}, @var{r}] =} cart2pol (@var{C}) ## @deftypefnx {Function File} {[@var{theta}, @var{r}, @var{z}] =} cart2pol (@var{C}) ## @deftypefnx {Function File} {@var{P} =} cart2pol (@dots{}) ## ## Transform Cartesian coordinates to polar or cylindrical coordinates. ## ## The inputs @var{x}, @var{y} (, and @var{z}) must be the same shape, or ## scalar. If called with a single matrix argument then each row of @var{C} ## represents the Cartesian coordinate (@var{x}, @var{y} (, @var{z})). ## ## @var{theta} describes the angle relative to the positive x-axis. ## ## @var{r} is the distance to the z-axis @w{(0, 0, z)}. ## ## If only a single return argument is requested then return a matrix @var{P} ## where each row represents one polar/(cylindrical) coordinate ## (@var{theta}, @var{phi} (, @var{z})). ## @seealso{pol2cart, cart2sph, sph2cart} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Adapted-by: jwe function [theta, r, z] = cart2pol (x, y, z = []) if (nargin < 1 || nargin > 3) print_usage (); endif if (nargin == 1) if (ismatrix (x) && (columns (x) == 2 || columns (x) == 3)) if (columns (x) == 3) z = x(:,3); endif y = x(:,2); x = x(:,1); else error ("cart2pol: matrix input must have 2 or 3 columns [X, Y (, Z)]"); endif elseif (nargin == 2) if (! ((ismatrix (x) && ismatrix (y)) && (size_equal (x, y) || isscalar (x) || isscalar (y)))) error ("cart2pol: arguments must be matrices of same size, or scalar"); endif elseif (nargin == 3) if (! ((ismatrix (x) && ismatrix (y) && ismatrix (z)) && (size_equal (x, y) || isscalar (x) || isscalar (y)) && (size_equal (x, z) || isscalar (x) || isscalar (z)) && (size_equal (y, z) || isscalar (y) || isscalar (z)))) error ("cart2pol: arguments must be matrices of same size, or scalar"); endif endif theta = atan2 (y, x); r = sqrt (x .^ 2 + y .^ 2); if (nargout <= 1) theta = [theta(:), r(:), z(:)]; endif endfunction %!test %! x = [0, 1, 2]; %! y = 0; %! [t, r] = cart2pol (x, y); %! assert (t, [0, 0, 0]); %! assert (r, x); %!test %! x = [0, 1, 2]; %! y = [0, 1, 2]; %! P = cart2pol (x, y); %! assert (P(:,1), [0; pi/4; pi/4], sqrt (eps)); %! assert (P(:,2), sqrt (2)*[0; 1; 2], sqrt (eps)); %!test %! x = [0, 1, 2]; %! y = [0, 1, 2]; %! z = [0, 1, 2]; %! [t, r, z2] = cart2pol (x, y, z); %! assert (t, [0, pi/4, pi/4], sqrt (eps)); %! assert (r, sqrt (2)*[0, 1, 2], sqrt (eps)); %! assert (z, z2); %!test %! x = [0, 1, 2]; %! y = 0; %! z = 0; %! [t, r, z2] = cart2pol (x, y, z); %! assert (t, [0, 0, 0], eps); %! assert (r, x, eps); %! assert (z, z2); %!test %! x = 0; %! y = [0, 1, 2]; %! z = 0; %! [t, r, z2] = cart2pol (x, y, z); %! assert (t, [0, 1, 1]*pi/2, eps); %! assert (r, y, eps); %! assert (z, z2); %!test %! x = 0; %! y = 0; %! z = [0, 1, 2]; %! [t, r, z2] = cart2pol (x, y, z); %! assert (t, 0); %! assert (r, 0); %! assert (z, z2); %!test %! C = [0, 0; 1, 1; 2, 2]; %! P = [0, 0; pi/4, sqrt(2); pi/4, 2*sqrt(2)]; %! assert (cart2pol (C), P, sqrt (eps)); %!test %! C = [0, 0, 0; 1, 1, 1; 2, 2, 2]; %! P = [0, 0, 0; pi/4, sqrt(2), 1; pi/4, 2*sqrt(2), 2]; %! assert (cart2pol (C), P, sqrt (eps));