Mercurial > hg > octave-nkf
view scripts/ode/private/integrate_adaptive.m @ 20798:128414587af2
don't print additional error message in argument list evaluation
* pt-arg-list.cc (tree_argument_list::convert_to_const_vector):
Don't call error for for failed argument evaluation.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 09 Oct 2015 16:52:49 -0400 |
parents | 87b557ee8e5d |
children | a22d8a2eb0e5 |
line wrap: on
line source
## Copyright (C) 2015, Carlo de Falco ## Copyright (C) 2013, Roberto Porcu' <roberto.porcu@polimi.it> ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{t}, @var{y}] =} integrate_adaptive (@var{@@stepper}, @var{order}, @var{@@fun}, @var{tspan}, @var{x0}, @var{options}) ## ## This function file can be called by an ODE solver function in order to ## integrate the set of ODEs on the interval @var{[t0,t1]} with an ## adaptive timestep. ## ## This function must be called with two output arguments: @var{t} and @var{y}. ## Variable @var{t} is a column vector and contains the time stamps, instead ## @var{y} is a matrix in which each column refers to a different unknown ## of the problem and the rows number is the same of @var{t} rows number so ## that each row of @var{y} contains the values of all unknowns at the time ## value contained in the corresponding row in @var{t}. ## ## The first input argument must be a function_handle or an inline function ## representing the stepper, that is the function responsible for step-by-step ## integration. This function discriminates one method from the others. ## ## The second input argument is the order of the stepper. It is needed ## to compute the adaptive timesteps. ## ## The third input argument is a function_handle or an inline function that ## defines the set of ODE: ## @ifhtml ## @example ## @math{y' = f(t,y)} ## @end example ## @end ifhtml ## @ifnothtml ## @math{y' = f(t,y)}. ## @end ifnothtml ## ## The fourth input argument is the time vector which defines integration ## interval, that is @var{[tspan(1),tspan(end)]} and all the intermediate ## elements are taken as times at which the solution is required. ## ## The fifth argument represents the initial conditions for the ODEs and the ## last input argument contains some options that may be needed for the stepper. ## ## @end deftypefn ## ## @seealso{integrate_const, integrate_n_steps} function solution = integrate_adaptive (stepper, order, func, tspan, x0, options) solution = struct (); ## first values for time and solution t = tspan(1); x = x0(:); ## get first initial timestep dt = odeget (options, "InitialStep", starting_stepsize (order, func, t, x, options.AbsTol, options.RelTol, options.vnormcontrol), "fast_not_empty"); vdirection = odeget (options, "vdirection", [], "fast"); if (sign (dt) != vdirection) dt = -dt; endif dt = vdirection * min (abs (dt), options.MaxStep); ## Set parameters k = length (tspan); counter = 2; comp = 0.0; tk = tspan(1); options.comp = comp; ## Factor multiplying the stepsize guess facmin = 0.8; fac = 0.38^(1/(order+1)); # formula taken from Hairer t_caught = false; ## Initialize the OutputFcn if (options.vhaveoutputfunction) if (options.vhaveoutputselection) solution.vretout = x(options.OutputSel,end); else solution.vretout = x; endif feval (options.OutputFcn, tspan, solution.vretout, "init", options.vfunarguments{:}); endif ## Initialize the EventFcn if (options.vhaveeventfunction) odepkg_event_handle (options.Events, t(end), x, "init", options.vfunarguments{:}); endif solution.vcntloop = 2; solution.vcntcycles = 1; vcntiter = 0; solution.vunhandledtermination = true; solution.vcntsave = 2; z = t; u = x; k_vals = []; while (counter <= k) facmax = 1.5; ## Compute integration step from t to t+dt if (isempty (k_vals)) [s, y, y_est, new_k_vals] = stepper (func, z(end), u(:,end), dt, options); else [s, y, y_est, new_k_vals] = stepper (func, z(end), u(:,end), dt, options, k_vals); endif if (options.vhavenonnegative) x(options.NonNegative,end) = abs (x(options.NonNegative,end)); y(options.NonNegative,end) = abs (y(options.NonNegative,end)); y_est(options.NonNegative,end) = abs (y_est(options.NonNegative,end)); endif if (options.vhaveoutputfunction && options.vhaverefine) vSaveVUForRefine = u(:,end); endif err = AbsRel_Norm (y(:,end), u(:,end), options.AbsTol, options.RelTol, options.vnormcontrol, y_est(:,end)); ## Solution accepted only if the error is less or equal to 1.0 if (err <= 1) [tk, options.comp] = kahan (tk, options.comp, dt); s(end) = tk; ## values on this interval for time and solution z = [z(end); s]; u = [u(:,end), y]; k_vals = new_k_vals; ## if next tspan value is caught, update counter if ((z(end) == tspan(counter)) || (abs (z(end) - tspan(counter)) / (max (abs (z(end)), abs (tspan(counter)))) < 8*eps) ) counter++; ## if there is an element in time vector at which the solution is ## required the program must compute this solution before going on with ## next steps elseif (vdirection * z(end) > vdirection * tspan(counter)) ## initialize counter for the following cycle i = 2; while (i <= length (z)) ## if next tspan value is caught, update counter if ((counter <= k) && ((z(i) == tspan(counter)) || (abs (z(i) - tspan(counter)) / (max (abs (z(i)), abs (tspan(counter)))) < 8*eps)) ) counter++; endif ## else, loop until there are requested values inside this subinterval while ((counter <= k) && (vdirection * z(i) > vdirection * tspan(counter))) ## choose interpolation scheme according to order of the solver u_interp = ... ode_rk_interpolate (order, [z(i-1) z(i)], [u(:,i-1) u(:,i)], tspan(counter), k_vals, dt, options.vfunarguments{:}); ## add the interpolated value of the solution u = [u(:,1:i-1), u_interp, u(:,i:end)]; ## add the time requested z = [z(1:i-1); tspan(counter); z(i:end)]; ## update counters counter++; i++; endwhile ## if new time requested is not out of this interval if ((counter <= k) && (vdirection * z(end) > vdirection * tspan(counter))) ## update the counter i++; else ## stop the cycle and go on with the next iteration i = length (z) + 1; endif endwhile endif if (mod (solution.vcntloop-1, options.OutputSave) == 0) x = [x,u(:,2:end)]; t = [t;z(2:end)]; solution.vcntsave = solution.vcntsave + 1; endif solution.vcntloop = solution.vcntloop + 1; vcntiter = 0; ## Call plot only if a valid result has been found, therefore this ## code fragment has moved here. Stop integration if plot function ## returns false if (options.vhaveoutputfunction) for vcnt = 0:options.Refine # Approximation between told and t if (options.vhaverefine) # Do interpolation vapproxtime = (vcnt + 1) / (options.Refine + 2); vapproxvals = (1 - vapproxtime) * vSaveVUForRefine ... + (vapproxtime) * y(:,end); vapproxtime = s(end) + vapproxtime * dt; else vapproxvals = x(:,end); vapproxtime = t(end); endif if (options.vhaveoutputselection) vapproxvals = vapproxvals(options.OutputSel); endif vpltret = feval (options.OutputFcn, vapproxtime, vapproxvals, [], options.vfunarguments{:}); if (vpltret) # Leave refinement loop break; endif endfor if (vpltret) # Leave main loop solution.vunhandledtermination = false; break; endif endif ## Call event only if a valid result has been found, therefore this ## code fragment has moved here. Stop integration if veventbreak is ## true if (options.vhaveeventfunction) solution.vevent = odepkg_event_handle (options.Events, t(end), x(:,end), [], options.vfunarguments{:}); if (! isempty (solution.vevent{1}) && solution.vevent{1} == 1) t(solution.vcntloop-1,:) = solution.vevent{3}(end,:); x(:,solution.vcntloop-1) = solution.vevent{4}(end,:)'; solution.vunhandledtermination = false; break; endif endif else facmax = 1.0; endif ## Compute next timestep, formula taken from Hairer err += eps; # adding an eps to avoid divisions by zero dt = dt * min (facmax, max (facmin, fac * (1 / err)^(1 / (order + 1)))); dt = vdirection * min (abs (dt), options.MaxStep); ## Update counters that count the number of iteration cycles solution.vcntcycles += 1; # Needed for cost statistics vcntiter += 1; # Needed to find iteration problems ## Stop solving because in the last 1000 steps no successful valid ## value has been found if (vcntiter >= 5000) error (["Solving has not been successful. The iterative", " integration loop exited at time t = %f before endpoint at", " tend = %f was reached. This happened because the iterative", " integration loop does not find a valid solution at this time", " stamp. Try to reduce the value of 'InitialStep' and/or", " 'MaxStep' with the command 'odeset'.\n"], s(end), tspan(end)); endif ## if this is the last iteration, save the length of last interval if (counter > k) j = length (z); endif endwhile ## Check if integration of the ode has been successful if (vdirection * z(end) < vdirection * tspan(end)) if (solution.vunhandledtermination == true) error ("OdePkg:InvalidArgument", ["Solving has not been successful. The iterative", " integration loop exited at time t = %f", " before endpoint at tend = %f was reached. This may", " happen if the stepsize grows smaller than defined in", " vminstepsize. Try to reduce the value of 'InitialStep'", " and/or 'MaxStep' with the command 'odeset'.\n"], z(end), tspan(end)); else warning ("OdePkg:InvalidArgument", ["Solver has been stopped by a call of 'break' in the main", " iteration loop at time t = %f before endpoint at tend = %f ", " was reached. This may happen because the @odeplot function", " returned 'true' or the @event function returned", " 'true'.\n"], z(end), tspan(end)); endif endif ## Compute how many values are out of time inerval d = vdirection * t((end-(j-1)):end) > vdirection * tspan(end)*ones (j, 1); f = sum (d); ## Remove not-requested values of time and solution solution.t = t(1:end-f); solution.x = x(:,1:end-f)'; endfunction