view scripts/linear-algebra/krylov.m @ 20579:131ce8cfaa80

Relax input in functions that convert between colorspaces (bug #45456) * scripts/image/hsv2rgb.m, scripts/image/ntsc2rgb.m, scripts/image/rgb2hsv.m, scripts/image/rgb2ntsc.m: remove all input check and leave it up to new private functions handled by all. This adds support for ND images, drops check for values in the [0 1] range, allows integer images, and allows sparse matrices. Also adjust tests and add extra ones. * scripts/image/private/colorspace_conversion_input_check.m, scripts/image/private/colorspace_conversion_revert.m: all of this functions handle input check in the same way. In the same way, they need to prepare the output in the same way based on what preparation was done during input check (transforming image into colormap). So we create two new private functions to avoid repeated code. All code was adapted from hsv2rgb.
author Carnë Draug <carandraug@octave.org>
date Sun, 19 Jul 2015 17:41:21 +0100
parents 83792dd9bcc1
children
line wrap: on
line source

## Copyright (C) 1993-2015 Auburn University.  All rights reserved.
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{u}, @var{h}, @var{nu}] =} krylov (@var{A}, @var{V}, @var{k}, @var{eps1}, @var{pflg})
## Construct an orthogonal basis @var{u} of block Krylov subspace
##
## @example
## [v a*v a^2*v @dots{} a^(k+1)*v]
## @end example
##
## @noindent
## using Householder reflections to guard against loss of orthogonality.
##
## If @var{V} is a vector, then @var{h} contains the Hessenberg matrix
## such that @nospell{@tcode{a*u == u*h+rk*ek'}}, in which
## @code{rk = a*u(:,k)-u*h(:,k)}, and @nospell{@tcode{ek'}} is the vector
## @code{[0, 0, @dots{}, 1]} of length @code{k}.  Otherwise, @var{h} is
## meaningless.
##
## If @var{V} is a vector and @var{k} is greater than @code{length (A) - 1},
## then @var{h} contains the Hessenberg matrix such that @code{a*u == u*h}.
##
## The value of @var{nu} is the dimension of the span of the Krylov subspace
## (based on @var{eps1}).
##
## If @var{b} is a vector and @var{k} is greater than @var{m-1}, then @var{h}
## contains the Hessenberg decomposition of @var{A}.
##
## The optional parameter @var{eps1} is the threshold for zero.  The default
## value is 1e-12.
##
## If the optional parameter @var{pflg} is nonzero, row pivoting is used to
## improve numerical behavior.  The default value is 0.
##
## Reference: @nospell{A. Hodel, P. Misra}, @cite{Partial Pivoting in the
## Computation of Krylov Subspaces of Large Sparse Systems}, Proceedings of
## the 42nd IEEE Conference on Decision and Control, December 2003.
## @end deftypefn

## Author: A. Scottedward Hodel <a.s.hodel@eng.auburn.edu>

function [Uret, H, nu] = krylov (A, V, k, eps1, pflg);

  if (isa (A, "single") || isa (V, "single"))
    defeps = 1e-6;
  else
    defeps = 1e-12;
  endif

  if (nargin < 3 || nargin > 5)
    print_usage ();
  elseif (nargin < 5)
    ## Default permutation flag.
    pflg = 0;
  endif

  if (nargin < 4)
    ## Default tolerance parameter.
    eps1 = defeps;
  endif

  if (isempty (eps1))
    eps1 = defeps;
  endif

  if (! issquare (A) || isempty (A))
    error ("krylov: A(%d x %d) must be a non-empty square matrix", rows (A), columns (A));
  endif
  na = rows (A);

  [m, kb] = size (V);
  if (m != na)
    error ("krylov: A(%d x %d), V(%d x %d): argument dimensions do not match",
          na, na, m, kb);
  endif

  if (! isscalar (k))
    error ("krylov: K must be a scalar integer");
  endif

  Vnrm = norm (V, Inf);

  ## check for trivial solution.
  if (Vnrm == 0)
    Uret = [];
    H = [];
    nu = 0;
    return;
  endif

  ## Identify trivial null space.
  abm = max (abs ([A, V]'));
  zidx = find (abm == 0);

  ## Set up vector of pivot points.
  pivot_vec = 1:na;

  iter = 0;
  alpha = [];
  nh = 0;
  while (length (alpha) < na) && (columns (V) > 0) && (iter < k)
    iter++;

    ## Get orthogonal basis of V.
    jj = 1;
    while (jj <= columns (V) && length (alpha) < na)
      ## Index of next Householder reflection.
      nu = length (alpha)+1;

      short_pv = pivot_vec(nu:na);
      q = V(:,jj);
      short_q = q(short_pv);

      if (norm (short_q) < eps1)
        ## Insignificant column; delete.
        nv = columns (V);
        if (jj != nv)
          [V(:,jj), V(:,nv)] = swap (V(:,jj), V(:,nv));
          ## FIXME: H columns should be swapped too.
          ##        Not done since Block Hessenberg structure is lost anyway.
        endif
        V = V(:,1:(nv-1));
        ## One less reflection.
        nu--;
      else
        ## New householder reflection.
        if (pflg)
          ## Locate max magnitude element in short_q.
          asq = abs (short_q);
          maxv = max (asq);
          maxidx = find (asq == maxv, 1);
          pivot_idx = short_pv(maxidx);

          ## See if need to change the pivot list.
          if (pivot_idx != pivot_vec(nu))
            swapidx = maxidx + (nu-1);
            [pivot_vec(nu), pivot_vec(swapidx)] = ...
                swap (pivot_vec(nu), pivot_vec(swapidx));
          endif
        endif

        ## Isolate portion of vector for reflection.
        idx = pivot_vec(nu:na);
        jdx = pivot_vec(1:nu);

        [hv, av, z] = housh (q(idx), 1, 0);
        alpha(nu) = av;
        U(idx,nu) = hv;

        ## Reduce V per the reflection.
        V(idx,:) = V(idx,:) - av*hv*(hv' * V(idx,:));
        if(iter > 1)
          ## FIXME: not done correctly for block case.
          H(nu,nu-1) = V(pivot_vec(nu),jj);
        endif

        ## Advance to next column of V.
        jj++;
      endif
    endwhile

    ## Check for oversize V (due to full rank).
    if ((columns (V) > na) && (length (alpha) == na))
      ## Trim to size.
      V = V(:,1:na);
    elseif (columns(V) > na)
      krylov_V = V;
      krylov_na = na;
      krylov_length_alpha = length (alpha);
      error ("krylov: this case should never happen; submit a bug report");
    endif

    if (columns (V) > 0)
      ## Construct next Q and multiply.
      Q = zeros (size (V));
      for kk = 1:columns (Q)
        Q(pivot_vec(nu-columns(Q)+kk),kk) = 1;
      endfor

      ## Apply Householder reflections.
      for ii = nu:-1:1
        idx = pivot_vec(ii:na);
        hv = U(idx,ii);
        av = alpha(ii);
        Q(idx,:) = Q(idx,:) - av*hv*(hv'*Q(idx,:));
      endfor
    endif

    ## Multiply to get new vector.
    V = A*Q;
    ## Project off of previous vectors.
    nu = length (alpha);
    for i = 1:nu
      hv = U(:,i);
      av = alpha(i);
      V -= av*hv*(hv'*V);
      H(i,nu-columns(V)+(1:columns(V))) = V(pivot_vec(i),:);
    endfor

  endwhile

  ## Back out complete U matrix.
  ## back out U matrix.
  j1 = columns (U);
  for i = j1:-1:1;
    idx = pivot_vec(i:na);
    hv = U(idx,i);
    av = alpha(i);
    U(:,i) = zeros (na, 1);
    U(idx(1),i) = 1;
    U(idx,i:j1) = U(idx,i:j1)-av*hv*(hv'*U(idx,i:j1));
  endfor

  nu = length (alpha);
  Uret = U;
  if (max (max (abs (Uret(zidx,:)))) > 0)
    warning ("krylov: trivial null space corrupted; set pflg = 1 or eps1 > %e",
             eps1);
  endif

endfunction


function [a1, b1] = swap (a, b)

  a1 = b;
  b1 = a;

endfunction