Mercurial > hg > octave-nkf
view src/ov-cx-mat.cc @ 2694:13f134a00f12
[project @ 1997-02-18 15:33:28 by jwe]
author | jwe |
---|---|
date | Tue, 18 Feb 1997 15:33:28 +0000 |
parents | 3d905d3820a4 |
children | 8b262e771614 |
line wrap: on
line source
/* Copyright (C) 1996 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #if defined (__GNUG__) #pragma implementation #endif #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "lo-ieee.h" #include "mx-base.h" #include "gripes.h" #include "oct-obj.h" #include "ops.h" #include "ov-complex.h" #include "ov-cx-mat.h" #include "ov-re-mat.h" #include "ov-scalar.h" #include "pr-output.h" octave_allocator octave_complex_matrix::allocator (sizeof (octave_complex_matrix)); int octave_complex_matrix::t_id (-1); const string octave_complex_matrix::t_name ("complex matrix"); octave_complex_matrix::octave_complex_matrix (const ComplexRowVector& v, int pcv) : octave_base_value (), matrix ((pcv < 0 && Vprefer_column_vectors) || pcv ? ComplexMatrix (v.transpose ()) : ComplexMatrix (v)) { } octave_complex_matrix::octave_complex_matrix (const ComplexColumnVector& v, int pcv) : octave_base_value (), matrix ((pcv < 0 && Vprefer_column_vectors) || pcv ? ComplexMatrix (v) : ComplexMatrix (v.transpose ())) { } octave_value * octave_complex_matrix::try_narrowing_conversion (void) { octave_value *retval = 0; int nr = matrix.rows (); int nc = matrix.cols (); if (nr == 1 && nc == 1) { Complex c = matrix (0, 0); if (imag (c) == 0.0) retval = new octave_scalar (::real (c)); else retval = new octave_complex (c); } else if (nr == 0 && nc == 0) retval = new octave_matrix (Matrix ()); else if (matrix.all_elements_are_real ()) retval = new octave_matrix (::real (matrix)); return retval; } octave_value octave_complex_matrix::index (const octave_value_list& idx) const { octave_value retval; int len = idx.length (); switch (len) { case 2: { idx_vector i = idx (0).index_vector (); idx_vector j = idx (1).index_vector (); retval = ComplexMatrix (matrix.index (i, j)); } break; case 1: { idx_vector i = idx (0).index_vector (); retval = ComplexMatrix (matrix.index (i)); } break; default: error ("invalid number of indices (%d) for complex matrix value", len); break; } return retval; } extern void assign (Array2<Complex>&, const Array2<Complex>&); void octave_complex_matrix::assign (const octave_value_list& idx, const ComplexMatrix& rhs) { int len = idx.length (); switch (len) { case 2: { idx_vector i = idx (0).index_vector (); idx_vector j = idx (1).index_vector (); matrix.set_index (i); matrix.set_index (j); ::assign (matrix, rhs); } break; case 1: { idx_vector i = idx (0).index_vector (); matrix.set_index (i); ::assign (matrix, rhs); } break; default: error ("invalid number of indices (%d) for indexed matrix assignment", len); break; } } extern void assign (Array2<Complex>&, const Array2<double>&); void octave_complex_matrix::assign (const octave_value_list& idx, const Matrix& rhs) { int len = idx.length (); switch (len) { case 2: { idx_vector i = idx (0).index_vector (); idx_vector j = idx (1).index_vector (); matrix.set_index (i); matrix.set_index (j); ::assign (matrix, rhs); } break; case 1: { idx_vector i = idx (0).index_vector (); matrix.set_index (i); ::assign (matrix, rhs); } break; default: error ("invalid number of indices (%d) for indexed matrix assignment", len); break; } } bool octave_complex_matrix::valid_as_scalar_index (void) const { // XXX FIXME XXX return false; } bool octave_complex_matrix::valid_as_zero_index (void) const { // XXX FIXME XXX return false; } bool octave_complex_matrix::is_true (void) const { bool retval = false; if (rows () == 0 || columns () == 0) { int flag = Vpropagate_empty_matrices; if (flag < 0) warning ("empty matrix used in conditional expression"); else if (flag == 0) error ("empty matrix used in conditional expression"); } else { Matrix m = (matrix.all ()) . all (); retval = (m.rows () == 1 && m.columns () == 1 && m (0, 0) != 0.0); } return retval; } double octave_complex_matrix::double_value (bool force_conversion) const { double retval = octave_NaN; int flag = force_conversion; if (! flag) flag = Vok_to_lose_imaginary_part; if (flag < 0) gripe_implicit_conversion ("complex matrix", "real scalar"); if (flag) { if ((rows () == 1 && columns () == 1) || (Vdo_fortran_indexing && rows () > 0 && columns () > 0)) retval = ::real (matrix (0, 0)); else gripe_invalid_conversion ("complex matrix", "real scalar"); } else gripe_invalid_conversion ("complex matrix", "real scalar"); return retval; } Matrix octave_complex_matrix::matrix_value (bool force_conversion) const { Matrix retval; int flag = force_conversion; if (! flag) flag = Vok_to_lose_imaginary_part; if (flag < 0) gripe_implicit_conversion ("complex matrix", "real matrix"); if (flag) retval = ::real (matrix); else gripe_invalid_conversion ("complex matrix", "real matrix"); return retval; } Complex octave_complex_matrix::complex_value (bool) const { Complex retval (octave_NaN, octave_NaN); if ((rows () == 1 && columns () == 1) || (Vdo_fortran_indexing && rows () > 0 && columns () > 0)) retval = matrix (0, 0); else gripe_invalid_conversion ("complex matrix", "complex scalar"); return retval; } ComplexMatrix octave_complex_matrix::complex_matrix_value (bool) const { return matrix; } void octave_complex_matrix::print (ostream& os, bool pr_as_read_syntax) { octave_print_internal (os, matrix, pr_as_read_syntax, struct_indent); } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */