Mercurial > hg > octave-nkf
view scripts/general/interpn.m @ 20177:15e5eb7a0c1d
make dist: add updated zoom images to EXTRADIST (bug #44579)
* libgui/graphics/module.mk: add graphics/images/zoom-in.png, graphics/images/zoom-out.png, remove graphics/images/zoom.png
author | John Donoghue |
---|---|
date | Thu, 19 Mar 2015 08:37:47 -0400 |
parents | 9fc020886ae9 |
children | 7503499a252b |
line wrap: on
line source
## Copyright (C) 2007-2015 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{m}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval}) ## ## Perform @var{n}-dimensional interpolation, where @var{n} is at least two. ## Each element of the @var{n}-dimensional array @var{v} represents a value ## at a location given by the parameters @var{x1}, @var{x2}, @dots{}, @var{xn}. ## The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either ## @var{n}-dimensional arrays of the same size as the array @var{v} in ## the @qcode{"ndgrid"} format or vectors. The parameters @var{y1}, etc. ## respect a similar format to @var{x1}, etc., and they represent the points ## at which the array @var{vi} is interpolated. ## ## If @var{x1}, @dots{}, @var{xn} are omitted, they are assumed to be ## @code{x1 = 1 : size (@var{v}, 1)}, etc. If @var{m} is specified, then ## the interpolation adds a point half way between each of the interpolation ## points. This process is performed @var{m} times. If only @var{v} is ## specified, then @var{m} is assumed to be @code{1}. ## ## The interpolation @var{method} is one of: ## ## @table @asis ## @item @qcode{"nearest"} ## Return the nearest neighbor. ## ## @item @qcode{"linear"} (default) ## Linear interpolation from nearest neighbors. ## ## @item @qcode{"pchip"} ## Piecewise cubic Hermite interpolating polynomial---shape-preserving ## interpolation with smooth first derivative (not implemented yet). ## ## @item @qcode{"cubic"} ## Cubic interpolation (same as @qcode{"pchip"} [not implemented yet]). ## ## @item @qcode{"spline"} ## Cubic spline interpolation---smooth first and second derivatives ## throughout the curve. ## @end table ## ## The default method is @qcode{"linear"}. ## ## @var{extrapval} is a scalar number. It replaces values beyond the endpoints ## with @var{extrapval}. Note that if @var{extrapval} is used, @var{method} ## must be specified as well. If @var{extrapval} is omitted and the ## @var{method} is @qcode{"spline"}, then the extrapolated values of the ## @qcode{"spline"} are used. Otherwise the default @var{extrapval} value for ## any other @var{method} is @qcode{"NA"}. ## @seealso{interp1, interp2, interp3, spline, ndgrid} ## @end deftypefn function vi = interpn (varargin) method = "linear"; extrapval = []; nargs = nargin; if (nargin < 1 || ! isnumeric (varargin{1})) print_usage (); endif if (nargs > 1 && ischar (varargin{end-1})) if (! isnumeric (varargin{end}) || ! isscalar (varargin{end})) error ("interpn: EXTRAPVAL must be a numeric scalar"); endif extrapval = varargin{end}; method = varargin{end-1}; nargs -= 2; elseif (ischar (varargin{end})) method = varargin{end}; nargs--; endif if (method(1) == "*") warning ("interpn: ignoring unsupported '*' flag to METHOD"); method(1) = []; endif method = validatestring (method, ... {"nearest", "linear", "pchip", "cubic", "spline"}); if (nargs < 3) v = varargin{1}; m = 1; if (nargs == 2) if (ischar (varargin{2})) method = varargin{2}; elseif (isnumeric (m) && isscalar (m) && fix (m) == m) m = varargin{2}; else print_usage (); endif endif sz = size (v); nd = ndims (v); x = cell (1, nd); y = cell (1, nd); for i = 1 : nd x{i} = 1 : sz(i); y{i} = 1 : (1 / (2 ^ m)) : sz(i); endfor y{1} = y{1}.'; [y{:}] = ndgrid (y{:}); elseif (! isvector (varargin{1}) && nargs == (ndims (varargin{1}) + 1)) v = varargin{1}; sz = size (v); nd = ndims (v); x = cell (1, nd); y = varargin(2 : nargs); for i = 1 : nd x{i} = 1 : sz(i); endfor elseif (rem (nargs, 2) == 1 && nargs == (2 * ndims (varargin{ceil (nargs / 2)})) + 1) nv = ceil (nargs / 2); v = varargin{nv}; sz = size (v); nd = ndims (v); x = varargin(1 : (nv - 1)); y = varargin((nv + 1) : nargs); else error ("interpn: wrong number or incorrectly formatted input arguments"); endif if (any (! cellfun ("isvector", x))) for i = 2 : nd if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v)) error ("interpn: dimensional mismatch"); endif idx(1 : nd) = {1}; idx(i) = ":"; x{i} = x{i}(idx{:})(:); endfor idx(1 : nd) = {1}; idx(1) = ":"; x{1} = x{1}(idx{:})(:); endif method = tolower (method); all_vectors = all (cellfun ("isvector", y)); different_lengths = numel (unique (cellfun ("numel", y))) > 1; if (all_vectors && different_lengths) [foobar(1:numel(y)).y] = ndgrid (y{:}); y = {foobar.y}; endif if (strcmp (method, "linear")) vi = __lin_interpn__ (x{:}, v, y{:}); if (isempty (extrapval)) extrapval = NA; endif vi(isna (vi)) = extrapval; elseif (strcmp (method, "nearest")) yshape = size (y{1}); yidx = cell (1, nd); for i = 1 : nd y{i} = y{i}(:); yidx{i} = lookup (x{i}, y{i}, "lr"); endfor idx = cell (1,nd); for i = 1 : nd idx{i} = yidx{i} ... + (y{i} - x{i}(yidx{i})(:) >= x{i}(yidx{i} + 1)(:) - y{i}); endfor vi = v(sub2ind (sz, idx{:})); idx = zeros (prod (yshape), 1); for i = 1 : nd idx |= y{i} < min (x{i}(:)) | y{i} > max (x{i}(:)); endfor if (isempty (extrapval)) extrapval = NA; endif vi(idx) = extrapval; vi = reshape (vi, yshape); elseif (strcmp (method, "spline")) if (any (! cellfun ("isvector", y))) for i = 2 : nd if (! size_equal (y{1}, y{i})) error ("interpn: dimensional mismatch"); endif idx(1 : nd) = {1}; idx(i) = ":"; y{i} = y{i}(idx{:}); endfor idx(1 : nd) = {1}; idx(1) = ":"; y{1} = y{1}(idx{:}); endif vi = __splinen__ (x, v, y, extrapval, "interpn"); if (size_equal (y{:})) ly = length (y{1}); idx = cell (1, ly); q = cell (1, nd); for i = 1 : ly q(:) = i; idx{i} = q; endfor vi = vi(cellfun (@(x) sub2ind (size (vi), x{:}), idx)); vi = reshape (vi, size (y{1})); endif elseif (strcmp (method, "cubic")) error ("interpn: cubic interpolation not yet implemented"); else error ("interpn: unrecognized interpolation METHOD"); endif endfunction %!demo %! clf; %! colormap ("default"); %! A = [13,-1,12;5,4,3;1,6,2]; %! x = [0,1,4]; y = [10,11,12]; %! xi = linspace (min (x), max (x), 17); %! yi = linspace (min (y), max (y), 26)'; %! mesh (xi, yi, interpn (x,y,A.',xi,yi, "linear").'); %! [x,y] = meshgrid (x,y); %! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off; %!demo %! clf; %! colormap ("default"); %! A = [13,-1,12;5,4,3;1,6,2]; %! x = [0,1,4]; y = [10,11,12]; %! xi = linspace (min (x), max (x), 17); %! yi = linspace (min (y), max (y), 26)'; %! mesh (xi, yi, interpn (x,y,A.',xi,yi, "nearest").'); %! [x,y] = meshgrid (x,y); %! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off; %!#demo # FIXME: Uncomment when support for "cubic" has been added %! clf; %! colormap ("default"); %! A = [13,-1,12;5,4,3;1,6,2]; %! x = [0,1,2]; y = [10,11,12]; %! xi = linspace (min (x), max (x), 17); %! yi = linspace (min (y), max (y), 26)'; %! mesh (xi, yi, interpn (x,y,A.',xi,yi, "cubic").'); %! [x,y] = meshgrid (x,y); %! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off; %!demo %! clf; %! colormap ("default"); %! A = [13,-1,12;5,4,3;1,6,2]; %! x = [0,1,2]; y = [10,11,12]; %! xi = linspace (min (x), max (x), 17); %! yi = linspace (min (y), max (y), 26)'; %! mesh (xi, yi, interpn (x,y,A.',xi,yi, "spline").'); %! [x,y] = meshgrid (x,y); %! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off; %!demo %! clf; %! colormap ("default"); %! x = y = z = -1:1; %! f = @(x,y,z) x.^2 - y - z.^2; %! [xx, yy, zz] = meshgrid (x, y, z); %! v = f (xx,yy,zz); %! xi = yi = zi = -1:0.1:1; %! [xxi, yyi, zzi] = ndgrid (xi, yi, zi); %! vi = interpn (x, y, z, v, xxi, yyi, zzi, "spline"); %! mesh (yi, zi, squeeze (vi(1,:,:))); %!test %! [x,y,z] = ndgrid (0:2); %! f = x + y + z; %! assert (interpn (x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5]), [1.5, 4.5]); %! assert (interpn (x,y,z,f,[.51 1.51],[.51 1.51],[.51 1.51],"nearest"), [3, 6]); %! assert (interpn (x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5],"spline"), [1.5, 4.5]); %! assert (interpn (x,y,z,f,x,y,z), f); %! assert (interpn (x,y,z,f,x,y,z,"nearest"), f); %! assert (interpn (x,y,z,f,x,y,z,"spline"), f); %!test %! [x, y, z] = ndgrid (0:2, 1:4, 2:6); %! f = x + y + z; %! xi = [0.5 1.0 1.5]; yi = [1.5 2.0 2.5 3.5]; zi = [2.5 3.5 4.0 5.0 5.5]; %! fi = interpn (x, y, z, f, xi, yi, zi); %! [xi, yi, zi] = ndgrid (xi, yi, zi); %! assert (fi, xi + yi + zi); %!test %! xi = 0:2; yi = 1:4; zi = 2:6; %! [x, y, z] = ndgrid (xi, yi, zi); %! f = x + y + z; %! fi = interpn (x, y, z, f, xi, yi, zi, "nearest"); %! assert (fi, x + y + z); %!test %! [x,y,z] = ndgrid (0:2); %! f = x.^2 + y.^2 + z.^2; %! assert (interpn (x,y,-z,f,1.5,1.5,-1.5), 7.5); %!test # for Matlab-compatible rounding for "nearest" %! x = meshgrid (1:4); %! assert (interpn (x, 2.5, 2.5, "nearest"), 3); %!test %! z = zeros (3, 3, 3); %! zout = zeros (5, 5, 5); %! z(:,:,1) = [1 3 5; 3 5 7; 5 7 9]; %! z(:,:,2) = z(:,:,1) + 2; %! z(:,:,3) = z(:,:,2) + 2; %! for n = 1:5 %! zout(:,:,n) = [1 2 3 4 5; %! 2 3 4 5 6; %! 3 4 5 6 7; %! 4 5 6 7 8; %! 5 6 7 8 9] + (n-1); %! endfor %! tol = 10*eps; %! assert (interpn (z), zout, tol); %! assert (interpn (z, "linear"), zout, tol); %! assert (interpn (z, "spline"), zout, tol); ## Test input validation %!warning <ignoring unsupported '\*' flag> interpn (rand (3,3), 1, "*linear");