Mercurial > hg > octave-nkf
view liboctave/Range.cc @ 5922:1748af819fbb
[project @ 2006-08-14 18:16:57 by jwe]
author | jwe |
---|---|
date | Mon, 14 Aug 2006 18:16:57 +0000 |
parents | 4c8a2e4e0717 |
children | a58b5981ab65 |
line wrap: on
line source
/* Copyright (C) 1996, 1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cfloat> #include <climits> #include <cmath> #include <iostream> #include "Range.h" #include "lo-mappers.h" #include "lo-utils.h" bool Range::all_elements_are_ints (void) const { // If the base and increment are ints, the final value in the range // will also be an integer, even if the limit is not. return (! (xisnan (rng_base) || xisnan (rng_inc)) && NINTbig (rng_base) == rng_base && NINTbig (rng_inc) == rng_inc); } Matrix Range::matrix_value (void) const { if (rng_nelem > 0 && cache.rows () == 0) { cache.resize (1, rng_nelem); double b = rng_base; double increment = rng_inc; for (octave_idx_type i = 0; i < rng_nelem; i++) cache(i) = b + i * increment; // On some machines (x86 with extended precision floating point // arithmetic, for example) it is possible that we can overshoot // the limit by approximately the machine precision even though // we were very careful in our calculation of the number of // elements. if ((rng_inc > 0 && cache(rng_nelem-1) > rng_limit) || (rng_inc < 0 && cache(rng_nelem-1) < rng_limit)) cache(rng_nelem-1) = rng_limit; } return cache; } // NOTE: max and min only return useful values if nelem > 0. double Range::min (void) const { double retval = 0.0; if (rng_nelem > 0) { if (rng_inc > 0) retval = rng_base; else { retval = rng_base + (rng_nelem - 1) * rng_inc; // See the note in the matrix_value method above. if (retval < rng_limit) retval = rng_limit; } } return retval; } double Range::max (void) const { double retval = 0.0; if (rng_nelem > 0) { if (rng_inc > 0) { retval = rng_base + (rng_nelem - 1) * rng_inc; // See the note in the matrix_value method above. if (retval > rng_limit) retval = rng_limit; } else retval = rng_base; } return retval; } void Range::sort (void) { if (rng_base > rng_limit && rng_inc < 0.0) { double tmp = rng_base; rng_base = min (); rng_limit = tmp; rng_inc = -rng_inc; clear_cache (); } } std::ostream& operator << (std::ostream& os, const Range& a) { double b = a.base (); double increment = a.inc (); octave_idx_type num_elem = a.nelem (); for (octave_idx_type i = 0; i < num_elem-1; i++) os << b + i * increment << " "; // Prevent overshoot. See comment in the matrix_value method // above. os << (increment > 0 ? a.max () : a.min ()) << "\n"; return os; } std::istream& operator >> (std::istream& is, Range& a) { is >> a.rng_base; if (is) { is >> a.rng_limit; if (is) { is >> a.rng_inc; a.rng_nelem = a.nelem_internal (); } } return is; } Range operator - (const Range& r) { return Range (-r.base (), -r.limit (), -r.inc ()); } // C See Knuth, Art Of Computer Programming, Vol. 1, Problem 1.2.4-5. // C // C===Tolerant FLOOR function. // C // C X - is given as a Double Precision argument to be operated on. // C It is assumed that X is represented with M mantissa bits. // C CT - is given as a Comparison Tolerance such that // C 0.LT.CT.LE.3-SQRT(5)/2. If the relative difference between // C X and A whole number is less than CT, then TFLOOR is // C returned as this whole number. By treating the // C floating-point numbers as a finite ordered set note that // C the heuristic EPS=2.**(-(M-1)) and CT=3*EPS causes // C arguments of TFLOOR/TCEIL to be treated as whole numbers // C if they are exactly whole numbers or are immediately // C adjacent to whole number representations. Since EPS, the // C "distance" between floating-point numbers on the unit // C interval, and M, the number of bits in X'S mantissa, exist // C on every floating-point computer, TFLOOR/TCEIL are // C consistently definable on every floating-point computer. // C // C For more information see the following references: // C (1) P. E. Hagerty, "More On Fuzzy Floor And Ceiling," APL QUOTE // C QUAD 8(4):20-24, June 1978. Note that TFLOOR=FL5. // C (2) L. M. Breed, "Definitions For Fuzzy Floor And Ceiling", APL // C QUOTE QUAD 8(3):16-23, March 1978. This paper cites FL1 through // C FL5, the history of five years of evolutionary development of // C FL5 - the seven lines of code below - by open collaboration // C and corroboration of the mathematical-computing community. // C // C Penn State University Center for Academic Computing // C H. D. Knoble - August, 1978. static inline double tfloor (double x, double ct) { // C---------FLOOR(X) is the largest integer algebraically less than // C or equal to X; that is, the unfuzzy FLOOR function. // DINT (X) = X - DMOD (X, 1.0); // FLOOR (X) = DINT (X) - DMOD (2.0 + DSIGN (1.0, X), 3.0); // C---------Hagerty's FL5 function follows... double q = 1.0; if (x < 0.0) q = 1.0 - ct; double rmax = q / (2.0 - ct); double t1 = 1.0 + floor (x); t1 = (ct / q) * (t1 < 0.0 ? -t1 : t1); t1 = rmax < t1 ? rmax : t1; t1 = ct > t1 ? ct : t1; t1 = floor (x + t1); if (x <= 0.0 || (t1 - x) < rmax) return t1; else return t1 - 1.0; } static inline double tceil (double x, double ct) { return -tfloor (-x, ct); } static inline bool teq (double u, double v, double ct = 3.0 * DBL_EPSILON) { double tu = fabs (u); double tv = fabs (v); return fabs (u - v) < ((tu > tv ? tu : tv) * ct); } octave_idx_type Range::nelem_internal (void) const { octave_idx_type retval = -1; if (rng_inc == 0 || (rng_limit > rng_base && rng_inc < 0) || (rng_limit < rng_base && rng_inc > 0)) { retval = 0; } else { double ct = 3.0 * DBL_EPSILON; double tmp = tfloor ((rng_limit - rng_base + rng_inc) / rng_inc, ct); octave_idx_type n_elt = (tmp > 0.0 ? static_cast<octave_idx_type> (tmp) : 0); // If the final element that we would compute for the range is // equal to the limit of the range, or is an adjacent floating // point number, accept it. Otherwise, try a range with one // fewer element. If that fails, try again with one more // element. // // I'm not sure this is very good, but it seems to work better than // just using tfloor as above. For example, without it, the // expression 1.8:0.05:1.9 fails to produce the expected result of // [1.8, 1.85, 1.9]. if (! teq (rng_base + (n_elt - 1) * rng_inc, rng_limit)) { if (teq (rng_base + (n_elt - 2) * rng_inc, rng_limit)) n_elt--; else if (teq (rng_base + n_elt * rng_inc, rng_limit)) n_elt++; } retval = (n_elt >= INT_MAX - 1) ? -1 : n_elt; } return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */