Mercurial > hg > octave-nkf
view liboctave/dim-vector.h @ 10480:19e1e4470e01
remove old sparse assembly ctors
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Wed, 31 Mar 2010 10:24:57 +0200 |
parents | 3373fdc0b14a |
children | 8615b55b5caf |
line wrap: on
line source
/* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 John W. Eaton Copyirght (C) 2009 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #if !defined (octave_dim_vector_h) #define octave_dim_vector_h 1 #include <cassert> #include <limits> #include <sstream> #include <string> #include "lo-error.h" #include "lo-macros.h" // Rationale: This implementation is more tricky than Array, but the // big plus is that dim_vector requires only one allocation instead of // two. It is (slightly) patterned after GCC's basic_string // implementation. rep is a pointer to an array of memory, comprising // count, length, and the data: // // <count> // <ndims> // rep --> <dims[0]> // <dims[1]> // ... // // The inlines count(), ndims() recover this data from the rep. Note // that rep points to the beginning of dims to grant faster access // (reinterpret_cast is assumed to be an inexpensive operation). class dim_vector { private: octave_idx_type *rep; octave_idx_type& ndims (void) const { return rep[-1]; } octave_idx_type& count (void) const { return rep[-2]; } // Construct a new rep with count = 1 and ndims given. static octave_idx_type *newrep (int ndims) { octave_idx_type *r = new octave_idx_type[ndims + 2]; *r++ = 1; *r++ = ndims; return r; } // Clone this->rep. octave_idx_type *clonerep (void) { int l = ndims (); octave_idx_type *r = new octave_idx_type[l + 2]; *r++ = 1; *r++ = l; for (int i = 0; i < l; i++) r[i] = rep[i]; return r; } // Clone and resize this->rep to length n, filling by given value. octave_idx_type *resizerep (int n, octave_idx_type fill_value) { int l = ndims (); if (n < 2) n = 2; octave_idx_type *r = new octave_idx_type[n + 2]; *r++ = 1; *r++ = n; if (l > n) l = n; int j; for (j = 0; j < l; j++) r[j] = rep[j]; for (; j < n; j++) r[j] = fill_value; return r; } // Free the rep. void freerep (void) { assert (count () == 0); delete [] (rep - 2); } void make_unique (void) { if (count () > 1) { --count(); rep = clonerep (); } } public: // The constructor // // dim_vector (n) // // creates an dimension vector with N rows and 1 column. It is // deprecated because of the potentiol for confusion that it causes. // Additional constructors of the form // // dim_vector (r, c) // dim_vector (r, c, p) // dim_vector (d1, d2, d3, d4, ...) // // are available for up to 7 dimensions. explicit dim_vector (octave_idx_type n) GCC_ATTR_DEPRECATED : rep (newrep (2)) { rep[0] = n; rep[1] = 1; } #define ASSIGN_REP(i) rep[i] = d ## i; #define DIM_VECTOR_CTOR(N) \ dim_vector (OCT_MAKE_DECL_LIST (octave_idx_type, d, N)) \ : rep (newrep (N)) \ { \ OCT_ITERATE_MACRO (ASSIGN_REP, N) \ } // Add more if needed. DIM_VECTOR_CTOR (2) DIM_VECTOR_CTOR (3) DIM_VECTOR_CTOR (4) DIM_VECTOR_CTOR (5) DIM_VECTOR_CTOR (6) DIM_VECTOR_CTOR (7) #undef ASSIGN_REP #undef DIM_VECTOR_CTOR dim_vector (const octave_idx_type *vec, size_t vec_size) : rep (newrep (vec_size)) { for (size_t k = 0; k < vec_size; k++) rep[k] = vec[k]; } octave_idx_type& elem (int i) { #ifdef BOUNDS_CHECKING assert (i >= 0 && i < ndims ()); #endif make_unique (); return rep[i]; } octave_idx_type elem (int i) const { #ifdef BOUNDS_CHECKING assert (i >= 0 && i < ndims ()); #endif return rep[i]; } void chop_trailing_singletons (void) { int l = ndims (); if (l > 2 && rep[l-1] == 1) { make_unique (); do l--; while (l > 2 && rep[l-1] == 1); ndims () = l; } } void chop_all_singletons (void) { make_unique (); int j = 0; int l = ndims(); for (int i = 0; i < l; i++) { if (rep[i] != 1) rep[j++] = rep[i]; } if (j == 1) rep[1] = 1; ndims () = j > 2 ? j : 2; } private: static octave_idx_type *nil_rep (void) { static dim_vector zv (0, 0); return zv.rep; } explicit dim_vector (octave_idx_type *r) : rep (r) { } public: explicit dim_vector (void) : rep (nil_rep ()) { count()++; } dim_vector (const dim_vector& dv) : rep (dv.rep) { count()++; } static dim_vector alloc (int n) { return dim_vector (newrep (n < 2 ? 2 : n)); } dim_vector& operator = (const dim_vector& dv) { if (&dv != this) { if (--count() <= 0) freerep (); rep = dv.rep; count()++; } return *this; } ~dim_vector (void) { if (--count() <= 0) freerep (); } int length (void) const { return ndims (); } octave_idx_type& operator () (int i) { return elem (i); } octave_idx_type operator () (int i) const { return elem (i); } void resize (int n, int fill_value = 0) { int len = length (); if (n != len) { octave_idx_type *r = resizerep (n, fill_value); if (--count() <= 0) freerep (); rep = r; } } std::string str (char sep = 'x') const { std::ostringstream buf; for (int i = 0; i < length (); i++) { buf << elem (i); if (i < length () - 1) buf << sep; } std::string retval = buf.str (); return retval; } bool all_zero (void) const { bool retval = true; for (int i = 0; i < length (); i++) { if (elem (i) != 0) { retval = false; break; } } return retval; } bool zero_by_zero (void) const { return length () == 2 && elem (0) == 0 && elem (1) == 0; } bool any_zero (void) const { bool retval = false; for (int i = 0; i < length (); i++) { if (elem (i) == 0) { retval = true; break; } } return retval; } int num_ones (void) const { int retval = 0; for (int i = 0; i < length (); i++) if (elem (i) == 1) retval++; return retval; } bool all_ones (void) const { return (num_ones () == length ()); } // Return the number of elements that a matrix with this dimension // vector would have, NOT the number of dimensions (elements in the // dimension vector). octave_idx_type numel (int n = 0) const { int n_dims = length (); octave_idx_type retval = 1; for (int i = n; i < n_dims; i++) retval *= elem (i); return retval; } // The following function will throw a std::bad_alloc () // exception if the requested size is larger than can be indexed by // octave_idx_type. This may be smaller than the actual amount of // memory that can be safely allocated on a system. However, if we // don't fail here, we can end up with a mysterious crash inside a // function that is iterating over an array using octave_idx_type // indices. octave_idx_type safe_numel (void) const { octave_idx_type idx_max = std::numeric_limits<octave_idx_type>::max () - 1; octave_idx_type n = 1; int n_dims = length (); for (int i = 0; i < n_dims; i++) { n *= rep[i]; if (rep[i] != 0) idx_max /= rep[i]; if (idx_max <= 0) throw std::bad_alloc (); } return n; } bool any_neg (void) const { int n_dims = length (); int i; for (i = 0; i < n_dims; i++) if (elem (i) < 0) break; return i < n_dims; } dim_vector squeeze (void) const { dim_vector new_dims = *this; bool dims_changed = 1; int k = 0; for (int i = 0; i < length (); i++) { if (elem (i) == 1) dims_changed = true; else new_dims(k++) = elem (i); } if (dims_changed) { if (k == 0) new_dims = dim_vector (1, 1); else if (k == 1) { // There is one non-singleton dimension, so we need // to decide the correct orientation. if (elem (0) == 1) { // The original dimension vector had a leading // singleton dimension. octave_idx_type tmp = new_dims(0); new_dims.resize (2); new_dims(0) = 1; new_dims(1) = tmp; } else { // The first element of the original dimension vector // was not a singleton dimension. new_dims.resize (2); new_dims(1) = 1; } } else new_dims.resize(k); } return new_dims; } bool concat (const dim_vector& dvb, int dim = 0) { if (all_zero ()) { *this = dvb; return true; } if (dvb.all_zero ()) return true; int na = length (); int nb = dvb.length (); // Find the max and min value of na and nb int n_max = na > nb ? na : nb; int n_min = na < nb ? na : nb; // The elements of the dimension vectors can only differ // if the dim variable differs from the actual dimension // they differ. for (int i = 0; i < n_min; i++) { if (elem(i) != dvb(i) && dim != i) return false; } // Ditto. for (int i = n_min; i < n_max; i++) { if (na > n_min) { if (elem(i) != 1 && dim != i) return false; } else { if (dvb(i) != 1 && dim != i) return false; } } // If we want to add the dimension vectors at a dimension // larger than both, then we need to set n_max to this number // so that we resize *this to the right dimension. n_max = n_max > (dim + 1) ? n_max : (dim + 1); // Resize *this to the appropriate dimensions. if (n_max > na) resize (n_max, 1); // Larger or equal since dim has been decremented by one. if (dim >= nb) elem (dim)++; else elem (dim) += dvb(dim); return true; } // Force certain dimensionality, preserving numel (). Missing // dimensions are set to 1, redundant are folded into the trailing // one. If n = 1, the result is 2d and the second dim is 1 // (dim_vectors are always at least 2D). If the original dimensions // were all zero, the padding value is zero. dim_vector redim (int n) const { int n_dims = length (); if (n_dims == n) return *this; else if (n_dims < n) { dim_vector retval = alloc (n); int pad = 0; for (int i = 0; i < n_dims; i++) { retval.rep[i] = rep[i]; if (rep[i] != 0) pad = 1; } for (int i = n_dims; i < n; i++) retval.rep[i] = pad; return retval; } else { if (n < 1) n = 1; dim_vector retval = alloc (n); retval.rep[1] = 1; for (int i = 0; i < n-1; i++) retval.rep[i] = rep[i]; int k = rep[n-1]; for (int i = n; i < n_dims; i++) k *= rep[i]; retval.rep[n-1] = k; return retval; } } dim_vector as_column (void) const { if (length () == 2 && elem (1) == 1) return *this; else return dim_vector (numel (), 1); } dim_vector as_row (void) const { if (length () == 2 && elem (0) == 1) return *this; else return dim_vector (1, numel ()); } bool is_vector (void) const { return (length () == 2 && (elem (0) == 1 || elem (1) == 1)); } int first_non_singleton (int def = 0) const { for (int i = 0; i < length (); i++) { if (elem (i) != 1) return i; } return def; } // Compute a linear index from an index tuple. octave_idx_type compute_index (const octave_idx_type *idx) { octave_idx_type k = 0; for (int i = length () - 1; i >= 0; i--) k = k * rep[i] + idx[i]; return k; } // Increment a multi-dimensional index tuple, optionally starting // from an offset position and return the index of the last index // position that was changed, or length () if just cycled over. int increment_index (octave_idx_type *idx, int start = 0) { int i; for (i = start; i < length (); i++) { if (++(*idx) == rep[i]) *idx++ = 0; else break; } return i; } // Return cumulative dimensions. dim_vector cumulative (void) const { int nd = length (); dim_vector retval = alloc (nd); octave_idx_type k = 1; for (int i = 0; i < nd; i++) retval.rep[i] = k *= rep[i]; return retval; } // Compute a linear index from an index tuple. Dimensions are // required to be cumulative. octave_idx_type cum_compute_index (const octave_idx_type *idx) { octave_idx_type k = idx[0]; for (int i = 1; i < length (); i++) k += rep[i-1] * idx[i]; return k; } friend bool operator == (const dim_vector& a, const dim_vector& b); }; inline bool operator == (const dim_vector& a, const dim_vector& b) { // Fast case. if (a.rep == b.rep) return true; bool retval = true; int a_len = a.length (); int b_len = b.length (); if (a_len != b_len) retval = false; else { for (int i = 0; i < a_len; i++) { if (a(i) != b(i)) { retval = false; break; } } } return retval; } inline bool operator != (const dim_vector& a, const dim_vector& b) { return ! operator == (a, b); } #endif