Mercurial > hg > octave-nkf
view scripts/control/dare.m @ 3397:1a8e2c0d627a
[project @ 1999-12-18 03:02:18 by jwe]
author | jwe |
---|---|
date | Sat, 18 Dec 1999 03:02:45 +0000 |
parents | 69b167451491 |
children | 0f515bc98460 |
line wrap: on
line source
## Copyright (C) 1996, 1997 Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA ## 02111-1307, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} dare (@var{a}, @var{b}, @var{c}, @var{r}, @var{opt}) ## ## Return the solution, @var{x} of the discrete-time algebraic Riccati ## equation ## @iftex ## @tex ## $$ ## A^TXA - X + A^TXB (R + B^TXB)^{-1} B^TXA + C = 0 ## $$ ## @end tex ## @end iftex ## @ifinfo ## @example ## a' x a - x + a' x b (r + b' x b)^(-1) b' x a + c = 0 ## @end example ## @end ifinfo ## @noindent ## ## @strong{Inputs} ## @table @var ## @item a ## @var{n} by @var{n}. ## ## @item b ## @var{n} by @var{m}. ## ## @item c ## @var{n} by @var{n}, symmetric positive semidefinite, or @var{p} by @var{n}. ## In the latter case @math{c:=c'*c} is used. ## ## @item r ## @var{m} by @var{m}, symmetric positive definite (invertible). ## ## @item opt ## (optional argument; default = @code{"B"}): ## String option passed to @code{balance} prior to ordered @var{QZ} decomposition. ## @end table ## ## @strong{Outputs} ## @var{x} solution of DARE. ## ## @strong{Method} ## Generalized eigenvalue approach (Van Dooren; SIAM J. ## Sci. Stat. Comput., Vol 2) applied to the appropriate symplectic pencil. ## ## See also: Ran and Rodman, "Stable Hermitian Solutions of Discrete ## Algebraic Riccati Equations," Mathematics of Control, Signals and ## Systems, Vol 5, no 2 (1992) pp 165-194. ## ## @end deftypefn ## See also: balance, are ## Author: A. S. Hodel <scotte@eng.auburn.edu> ## Created: August 1993 ## Adapted-By: jwe function x = dare (a, b, c, r, opt) if (nargin == 4 | nargin == 5) if (nargin == 5) if (opt != "N" || opt != "P" || opt != "S" || opt != "B") warning ("dare: opt has an invalid value -- setting to B"); opt = "B"; endif else opt = "B"; endif ## dimension checks are done in is_controllable, is_observable if (is_controllable (a, b) == 0) warning ("dare: a,b are not controllable"); elseif (is_observable (a, c) == 0) warning ("dare: a,c are not observable"); endif if ((p = is_square (c)) == 0) c = c'*c; p = rows (c); endif ## Check r dimensions. n = rows(a); m = columns(b); if ((m1 = is_square (r)) == 0) warning ("dare: r is not square"); elseif (m1 != m) warning ("b,r are not conformable"); endif s1 = [a, zeros(n) ; -c, eye(n)]; s2 = [eye(n), (b/r)*b' ; zeros(n), a']; [c,d,s1,s2] = balance(s1,s2,opt); [aa,bb,u,lam] = qz(s1,s2,"S"); u = d*u; n1 = n+1; n2 = 2*n; x = u (n1:n2, 1:n)/u(1:n, 1:n); else usage ("x = dare (a, b, c, r {,opt})"); endif endfunction