Mercurial > hg > octave-nkf
view scripts/general/bicubic.m @ 15148:1b2fbc30e4e7
Postfix increment and decrement operations in JIT
* jit-typeinfo.cc (jit_typeinfo::jit_typeinfo): Initialize copy operation.
* jit-typeinfo.h (jit_typeinfo::copy): New function.
* pt-jit.cc (jit_convert::visit_postfix_expression): Implement for ++ and --.
author | Max Brister <max@2bass.com> |
---|---|
date | Fri, 10 Aug 2012 16:41:07 -0500 |
parents | 5d3a684236b0 |
children | f3b5cadfd6d5 |
line wrap: on
line source
## Copyright (C) 2005-2012 Hoxide Ma ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{zi} =} bicubic (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{extrapval}) ## ## Return a matrix @var{zi} corresponding to the bicubic ## interpolations at @var{xi} and @var{yi} of the data supplied ## as @var{x}, @var{y} and @var{z}. Points outside the grid are set ## to @var{extrapval}. ## ## See @url{http://wiki.woodpecker.org.cn/moin/Octave/Bicubic} ## for further information. ## @seealso{interp2} ## @end deftypefn ## Bicubic interpolation method. ## Author: Hoxide Ma <hoxide_dirac@yahoo.com.cn> function zi = bicubic (x, y, z, xi, yi, extrapval, spline_alpha) if (nargin < 1 || nargin > 7) print_usage (); endif if (nargin == 7 && isscalar (spline_alpha)) a = spline_alpha; else a = 0.5; endif if (nargin < 6) extrapval = NaN; endif if (isa (x, "single") || isa (y, "single") || isa (z, "single") || isa (xi, "single") || isa (yi, "single")) myeps = eps ("single"); else myeps = eps (); endif if (nargin <= 2) ## bicubic (z) or bicubic (z, 2) if (nargin == 1) n = 1; else n = y; endif z = x; x = []; [rz, cz] = size (z); s = linspace (1, cz, (cz-1) * pow2 (n) + 1); t = linspace (1, rz, (rz-1) * pow2 (n) + 1); elseif (nargin == 3) if (! isvector (x) || ! isvector (y)) error ("bicubic: XI and YI must be vector"); endif s = y; t = z; z = x; [rz, cz] = size (z); elseif (nargin == 5 || nargin == 6) [rz, cz] = size (z) ; if (isvector (x) && isvector (y)) if (rz != length (y) || cz != length (x)) error ("bicubic: length of X and Y must match the size of Z"); endif elseif (size_equal (x, y) && size_equal (x, z)) x = x(1,:); y = y(:,1); else error ("bicubic: X, Y and Z must be equal size matrices of same size"); endif if (all (diff (x) < 0)) flipx = true; x = fliplr (x); elseif (all (diff (x) > 0)) flipx = false; else error ("bicubic:nonmonotonic", "bicubic: X values must be monotonic") endif if (all (diff (y) < 0)) flipy = true; y = flipud (y); elseif (all (diff (y) > 0)) flipy = false; else error ("bicubic:nonmonotonic", "bicubic: Y values must be monotonic") endif ## Mark values outside the lookup table. xfirst_ind = find (xi < x(1)); xlast_ind = find (xi > x(cz)); yfirst_ind = find (yi < y(1)); ylast_ind = find (yi > y(rz)); ## Set value outside the table preliminary to min max index. xi(xfirst_ind) = x(1); xi(xlast_ind) = x(cz); yi(yfirst_ind) = y(1); yi(ylast_ind) = y(rz); x = reshape (x, 1, cz); x(cz) *= 1 + sign (x(cz)) * myeps; if (x(cz) == 0) x(cz) = myeps; endif; xi = reshape (xi, 1, length (xi)); [m, i] = sort ([x, xi]); o = cumsum (i <= cz); xidx = o(find (i > cz)); y = reshape (y, rz, 1); y(rz) *= 1 + sign (y(rz)) * myeps; if (y(rz) == 0) y(rz) = myeps; endif; yi = reshape (yi, length (yi), 1); [m, i] = sort ([y; yi]); o = cumsum (i <= rz); yidx = o([find(i > rz)]); ## Set s and t used follow codes. s = xidx + ((xi .- x(xidx)) ./ (x(xidx+1) .- x(xidx))); t = yidx + ((yi - y(yidx)) ./ (y(yidx+1) - y(yidx))); if (flipx) s = fliplr (s); endif if (flipy) t = flipud (t); endif else print_usage (); endif if (rz < 3 || cz < 3) error ("bicubic: Z at least a 3 by 3 matrices"); endif inds = floor (s); d = find (s == cz); s = s - floor (s); inds(d) = cz-1; s(d) = 1.0; d = []; indt = floor (t); d = find (t == rz); t = t - floor (t); indt(d) = rz-1; t(d) = 1.0; d = []; p = zeros (size (z) + 2); p(2:rz+1,2:cz+1) = z; p(1,:) = (6*(1-a))*p(2,:) - 3*p(3,:) + (6*a-2)*p(4,:); p(rz+2,:) = (6*(1-a))*p(rz+1,:) - 3*p(rz,:) + (6*a-2)*p(rz-1,:); p(:,1) = (6*(1-a))*p(:,2) - 3*p(:,3) + (6*a-2)*p(:,4); p(:,cz+2) = (6*(1-a))*p(:,cz+1) - 3*p(:,cz) + (6*a-2)*p(:,cz-1); ## Calculte the C1(t) C2(t) C3(t) C4(t) and C1(s) C2(s) C3(s) C4(s). t2 = t.*t; t3 = t2.*t; ct0 = -a .* t3 + (2 * a) .* t2 - a .* t ; # -a G0 ct1 = (2-a) .* t3 + (-3+a) .* t2 + 1 ; # F0 - a G1 ct2 = (a-2) .* t3 + (-2 *a + 3) .* t2 + a .* t ; # F1 + a G0 ct3 = a .* t3 - a .* t2; # a G1 t = []; t2 = []; t3 = []; s2 = s.*s; s3 = s2.*s; cs0 = -a .* s3 + (2 * a) .* s2 - a .*s ; # -a G0 cs1 = (2-a) .* s3 + (-3 + a) .* s2 + 1 ; # F0 - a G1 cs2 = (a-2) .* s3 + (-2 *a + 3) .* s2 + a .*s ; # F1 + a G0 cs3 = a .* s3 - a .* s2; # a G1 s = []; s2 = []; s3 = []; cs0 = cs0([1,1,1,1],:); cs1 = cs1([1,1,1,1],:); cs2 = cs2([1,1,1,1],:); cs3 = cs3([1,1,1,1],:); lent = length (ct0); lens = columns (cs0); zi = zeros (lent, lens); for i = 1:lent it = indt(i); int = [it, it+1, it+2, it+3]; zi(i,:) = ([ct0(i),ct1(i),ct2(i),ct3(i)] * (p(int,inds) .* cs0 + p(int,inds+1) .* cs1 + p(int,inds+2) .* cs2 + p(int,inds+3) .* cs3)); endfor ## Set points outside the table to extrapval. if (! (isempty (xfirst_ind) && isempty (xlast_ind))) zi(:, [xfirst_ind, xlast_ind]) = extrapval; endif if (! (isempty (yfirst_ind) && isempty (ylast_ind))) zi([yfirst_ind; ylast_ind], :) = extrapval; endif endfunction %!demo %! clf; %! colormap ("default"); %! A = [13,-1,12;5,4,3;1,6,2]; %! x = [0,1,4]+10; %! y = [-10,-9,-8]; %! xi = linspace (min (x), max (x), 17); %! yi = linspace (min (y), max (y), 26)'; %! mesh (xi, yi, bicubic (x,y,A,xi,yi)); %! [x,y] = meshgrid (x,y); %! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off; %!test %! x = linspace (1, -1, 10); %! [xx, yy] = meshgrid (x); %! z = cos (6 * xx) + sin (6 * yy); %! x = linspace (1, -1, 30); %! [xx2, yy2] = meshgrid (x); %! z1 = interp2 (xx, yy, z, xx2, yy2, "cubic"); %! z2 = interp2 (fliplr (xx), flipud (yy), fliplr (flipud(z)), %! fliplr (xx2), flipud (yy2), "cubic"); %! z2 = fliplr (flipud (z2)); %! assert (z1, z2, 100 * eps ())