Mercurial > hg > octave-nkf
view scripts/general/cart2sph.m @ 15148:1b2fbc30e4e7
Postfix increment and decrement operations in JIT
* jit-typeinfo.cc (jit_typeinfo::jit_typeinfo): Initialize copy operation.
* jit-typeinfo.h (jit_typeinfo::copy): New function.
* pt-jit.cc (jit_convert::visit_postfix_expression): Implement for ++ and --.
author | Max Brister <max@2bass.com> |
---|---|
date | Fri, 10 Aug 2012 16:41:07 -0500 |
parents | f3d52523cde1 |
children | 36b9fa789d8e |
line wrap: on
line source
## Copyright (C) 2000-2012 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{theta}, @var{phi}, @var{r}] =} cart2sph (@var{x}, @var{y}, @var{z}) ## @deftypefnx {Function File} {[@var{theta}, @var{phi}, @var{r}] =} cart2sph (@var{C}) ## @deftypefnx {Function File} {@var{S} =} cart2sph (@dots{}) ## Transform Cartesian to spherical coordinates. ## ## @var{theta} describes the angle relative to the positive x-axis. ## @var{phi} is the angle relative to the xy-plane. ## @var{r} is the distance to the origin @w{(0, 0, 0)}. ## @var{x}, @var{y}, and @var{z} must be the same shape, or scalar. ## If called with a single matrix argument then each row of @var{c} ## represents the Cartesian coordinate (@var{x}, @var{y}, @var{z}). ## ## If only a single return argument is requested then return a matrix ## @var{s} where each row represents one spherical coordinate ## (@var{theta}, @var{phi}, @var{r}). ## @seealso{sph2cart, cart2pol, pol2cart} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Adapted-by: jwe function [theta, phi, r] = cart2sph (x, y, z) if (nargin != 1 && nargin != 3) print_usage (); endif if (nargin == 1) if (ismatrix (x) && columns (x) == 3) z = x(:,3); y = x(:,2); x = x(:,1); else error ("cart2sph: matrix input must have 3 columns [X, Y, Z]"); endif elseif (nargin == 3) if (! ((ismatrix (x) && ismatrix (y) && ismatrix (z)) && (size_equal (x, y) || isscalar (x) || isscalar (y)) && (size_equal (x, z) || isscalar (x) || isscalar (z)) && (size_equal (y, z) || isscalar (y) || isscalar (z)))) error ("cart2sph: X, Y, Z must be matrices of the same size, or scalar"); endif endif theta = atan2 (y, x); phi = atan2 (z, sqrt (x .^ 2 + y .^ 2)); r = sqrt (x .^ 2 + y .^ 2 + z .^ 2); if (nargout <= 1) theta = [theta, phi, r]; endif endfunction %!test %! x = [0, 1, 2]; %! y = [0, 1, 2]; %! z = [0, 1, 2]; %! [t, p, r] = cart2sph (x, y, z); %! assert (t, [0, pi/4, pi/4], eps); %! assert (p, [0, 1, 1]*atan (sqrt (0.5)), eps); %! assert (r, [0, 1, 2]*sqrt (3), eps); %!test %! x = 0; %! y = [0, 1, 2]; %! z = [0, 1, 2]; %! [t, p, r] = cart2sph (x, y, z); %! assert (t, [0, 1, 1] * pi/2, eps); %! assert (p, [0, 1, 1] * pi/4, eps); %! assert (r, [0, 1, 2] * sqrt (2), eps); %!test %! x = [0, 1, 2]; %! y = 0; %! z = [0, 1, 2]; %! [t, p, r] = cart2sph (x, y, z); %! assert (t, [0, 0, 0]); %! assert (p, [0, 1, 1] * pi/4); %! assert (r, [0, 1, 2] * sqrt (2)); %!test %! x = [0, 1, 2]; %! y = [0, 1, 2]; %! z = 0; %! [t, p, r] = cart2sph (x, y, z); %! assert (t, [0, 1, 1] * pi/4); %! assert (p, [0, 0, 0]); %! assert (r, [0, 1, 2] * sqrt (2)); %!test %! C = [0, 0, 0; 1, 0, 1; 2, 0, 2]; %! S = [0, 0, 0; 0, pi/4, sqrt(2); 0, pi/4, 2*sqrt(2)]; %! assert (cart2sph (C), S, eps);