Mercurial > hg > octave-nkf
view scripts/general/trapz.m @ 15148:1b2fbc30e4e7
Postfix increment and decrement operations in JIT
* jit-typeinfo.cc (jit_typeinfo::jit_typeinfo): Initialize copy operation.
* jit-typeinfo.h (jit_typeinfo::copy): New function.
* pt-jit.cc (jit_convert::visit_postfix_expression): Implement for ++ and --.
author | Max Brister <max@2bass.com> |
---|---|
date | Fri, 10 Aug 2012 16:41:07 -0500 |
parents | f3d52523cde1 |
children | d63878346099 |
line wrap: on
line source
## Copyright (C) 2000-2012 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{q} =} trapz (@var{y}) ## @deftypefnx {Function File} {@var{q} =} trapz (@var{x}, @var{y}) ## @deftypefnx {Function File} {@var{q} =} trapz (@dots{}, @var{dim}) ## ## Numerically evaluate the integral of points @var{y} using the trapezoidal ## method. ## @w{@code{trapz (@var{y})}} computes the integral of @var{y} along the first ## non-singleton dimension. When the argument @var{x} is omitted an ## equally spaced @var{x} vector with unit spacing (1) is assumed. ## @code{trapz (@var{x}, @var{y})} evaluates the integral with respect ## to the spacing in @var{x} and the values in @var{y}. This is useful if ## the points in @var{y} have been sampled unevenly. ## If the optional @var{dim} argument is given, operate along this dimension. ## ## If @var{x} is not specified then unit spacing will be used. To scale ## the integral to the correct value you must multiply by the actual spacing ## value (deltaX). As an example, the integral of @math{x^3} over the range ## [0, 1] is @math{x^4/4} or 0.25. The following code uses @code{trapz} to ## calculate the integral in three different ways. ## ## @example ## @group ## x = 0:0.1:1; ## y = x.^3; ## q = trapz (y) ## @result{} q = 2.525 # No scaling ## q * 0.1 ## @result{} q = 0.2525 # Approximation to integral by scaling ## trapz (x, y) ## @result{} q = 0.2525 # Same result by specifying @var{x} ## @end group ## @end example ## ## @seealso{cumtrapz} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## ## also: June 2000 - Paul Kienzle (fixes,suggestions) ## 2006-05-12 David Bateman - Modified for NDArrays function z = trapz (x, y, dim) if (nargin < 1) || (nargin > 3) print_usage (); endif have_xy = have_dim = false; if (nargin == 3) have_xy = true; have_dim = true; elseif (nargin == 2) if (! size_equal (x, y) && isscalar (y)) dim = y; have_dim = true; else have_xy = true; endif endif if (have_xy) nd = ndims (y); sz = size (y); else nd = ndims (x); sz = size (x); endif if (! have_dim) ## Find the first non-singleton dimension. (dim = find (sz > 1, 1)) || (dim = 1); else if (!(isscalar (dim) && dim == fix (dim)) || !(1 <= dim && dim <= nd)) error ("trapz: DIM must be an integer and a valid dimension"); endif endif n = sz(dim); idx1 = idx2 = repmat ({':'}, [nd, 1]); idx1{dim} = 2 : n; idx2{dim} = 1 : (n - 1); if (! have_xy) z = 0.5 * sum (x(idx1{:}) + x(idx2{:}), dim); else if (isvector (x) && !isvector (y)) if (length (x) != sz(dim)) error ("trapz: length of X and length of Y along DIM must match"); endif ## Reshape vector to point along dimension DIM shape = ones (nd, 1); shape(dim) = sz(dim); x = reshape (x, shape); z = 0.5 * sum (bsxfun (@times, diff (x), y(idx1{:}) + y(idx2{:})), dim); else if (! size_equal (x, y)) error ("trapz: X and Y must have same shape"); endif z = 0.5 * sum (diff (x, 1, dim) .* (y(idx1{:}) + y(idx2{:})), dim); endif endif endfunction %!assert (trapz (1:5), 12) %!assert (trapz (0:0.5:2,1:5), 6) %!assert (trapz ([1:5;1:5].',1), [12,12]) %!assert (trapz ([1:5;1:5],2), [12;12]) %!assert (trapz (repmat (reshape (1:5,1,1,5),2,2), 3), [12 12; 12 12]) %!assert (trapz ([0:0.5:2;0:0.5:2].',[1:5;1:5].',1), [6, 6]) %!assert (trapz ([0:0.5:2;0:0.5:2],[1:5;1:5],2), [6; 6]) %!assert (trapz (repmat (reshape ([0:0.5:2],1,1,5),2,2), ... %! repmat (reshape (1:5,1,1,5),2,2), 3), [6 6; 6 6]) %!assert (trapz (0:0.5:2,[(1:5)',(1:5)']), [6, 6]) %!assert (trapz (0:0.5:2,[(1:5);(1:5)],2), [6; 6]) %!assert (trapz (0:0.5:2,repmat (reshape (1:5,1,1,5),2,2),3), [6 6; 6 6])