Mercurial > hg > octave-nkf
view scripts/polynomial/polyfit.m @ 2261:1b6e1629fb91
[project @ 1996-05-23 00:52:07 by jwe]
Initial revision
author | jwe |
---|---|
date | Thu, 23 May 1996 00:52:07 +0000 |
parents | |
children | 5cffc4b8de57 |
line wrap: on
line source
function p = polyfit (x, y, n) # usage: polyfit (x, y, n) # # Returns the coefficients of a polynomial p(x) of degree n that # minimizes sumsq (p(x(i)) - y(i)), i.e., that best fits the data # in the least squares sense. # Written by KH (Kurt.Hornik@ci.tuwien.ac.at) on Dec 13, 1994 # Copyright Dept of Statistics and Probability Theory TU Wien if (nargin != 3) usage ("polyfit (x, y, n)"); endif if (! (is_vector (x) && is_vector (y) && size (x) == size (y))) error ("polyfit: x and y must be vectors of the same size"); endif if (! (is_scalar (n) && n >= 0 && ! isinf (n) && n == round (n))) error ("polyfit: n must be a nonnegative integer"); endif l = length (x); x = reshape (x, l, 1); y = reshape (y, l, 1); X = ones (l, 1); if (n > 0) tmp = (x * ones (1, n)) .^ (ones (l, 1) * (1 : n)); X = [X, tmp]; endif # Compute polynomial coeffients, making returned value compatible # with Matlab. [Q, R] = qr (X, 0); p = flipud (R \ (Q' * y)); if (! prefer_column_vectors) p = p'; endif endfunction