Mercurial > hg > octave-nkf
view scripts/general/repmat.m @ 9665:1dba57e9d08d
use blas_trans_type for xgemm
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Sat, 26 Sep 2009 10:41:07 +0200 |
parents | 5556563c6551 |
children | be55736a0783 |
line wrap: on
line source
## Copyright (C) 2000, 2002, 2004, 2005, 2006, 2007, 2009 Paul Kienzle ## Copyright (C) 2008 Jaroslav Hajek ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} repmat (@var{A}, @var{m}, @var{n}) ## @deftypefnx {Function File} {} repmat (@var{A}, [@var{m} @var{n}]) ## @deftypefnx {Function File} {} repmat (@var{A}, [@var{m} @var{n} @var{p} @dots{}]) ## Form a block matrix of size @var{m} by @var{n}, with a copy of matrix ## @var{A} as each element. If @var{n} is not specified, form an ## @var{m} by @var{m} block matrix. ## @end deftypefn ## Author: Paul Kienzle <pkienzle@kienzle.powernet.co.uk> ## Created: July 2000 function x = repmat (a, m, n) if (nargin < 2 || nargin > 3) print_usage (); endif if (nargin == 3) if (! (isscalar (m) && isscalar (n))) error ("repmat: with 3 arguments m and n must be scalar"); endif idx = [m, n]; else if (isscalar (m)) idx = [m, m]; n = m; elseif (isvector (m) && length (m) > 1) ## Ensure that we have a row vector idx = m(:).'; else error ("repmat: invalid dimensional argument"); endif endif if (all (idx < 0)) error ("repmat: invalid dimensions"); else idx = max (idx, 0); endif if (numel (a) == 1) ## optimize the scalar fill case. x(1:prod (idx)) = a; x = reshape (x, idx); elseif (ndims (a) == 2 && length (idx) < 3) if (issparse (a)) x = kron (ones (idx), a); else ## indexing is now faster, so we use it rather than kron. m = rows (a); n = columns (a); p = idx(1); q = idx(2); x = reshape (a, m, 1, n, 1); x = x(:, ones (1, p), :, ones (1, q)); x = reshape (x, m*p, n*q); endif else aidx = size (a); ## ensure matching size idx(end+1:length (aidx)) = 1; aidx(end+1:length (idx)) = 1; ## create subscript array cidx = cell (2, length (aidx)); for i = 1:length (aidx) cidx{1,i} = ':'; cidx{2,i} = ones (1, idx (i)); endfor aaidx = aidx; # add singleton dims aaidx(2,:) = 1; a = reshape (a, aaidx(:)); x = reshape (a (cidx{:}), idx .* aidx); endif endfunction # Test various methods of providing size parameters %!shared x %! x = [1 2;3 4]; %!assert(repmat(x, [1 1]), repmat(x, 1)); %!assert(repmat(x, [3 3]), repmat(x, 3)); %!assert(repmat(x, [1 1]), repmat(x, 1, 1)); %!assert(repmat(x, [1 3]), repmat(x, 1, 3)); %!assert(repmat(x, [3 1]), repmat(x, 3, 1)); %!assert(repmat(x, [3 3]), repmat(x, 3, 3)); # Tests for numel==1 case: %!shared x, r %! x = [ 65 ]; %! r = kron(ones(2,2), x); %!assert(r, repmat(x, [2 2])); %!assert(char(r), repmat(char(x), [2 2])); %!assert(int8(r), repmat(int8(x), [2 2])); # Tests for ndims==2 case: %!shared x, r %! x = [ 65 66 67 ]; %! r = kron(ones(2,2), x); %!assert(r, repmat(x, [2 2])); %!assert(char(r), repmat(char(x), [2 2])); %!assert(int8(r), repmat(int8(x), [2 2])); # Tests for dim>2 case: %!shared x, r %! x = [ 65 66 67 ]; %! r = kron(ones(2,2), x); %! r(:,:,2) = r(:,:,1); %!assert(r, repmat(x, [2 2 2])); %!assert(char(r), repmat(char(x), [2 2 2])); %!assert(int8(r), repmat(int8(x), [2 2 2])); # Test that sparsity is kept %!assert(sparse(4,4), repmat(sparse(2,2),[2 2])); %!assert (size (repmat (".", -1, 1)), [0, 1]); %!assert (size (repmat (".", 1, -1)), [1, 0]); %!error (size (repmat (".", -1, -1)));