Mercurial > hg > octave-nkf
view scripts/specfun/nchoosek.m @ 9665:1dba57e9d08d
use blas_trans_type for xgemm
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Sat, 26 Sep 2009 10:41:07 +0200 |
parents | a7a9eecc07b5 |
children | 95c3e38098bf |
line wrap: on
line source
## Copyright (C) 2001, 2006, 2007, 2009 Rolf Fabian and Paul Kienzle ## Copyright (C) 2008 Jaroslav Hajek ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{c} =} nchoosek (@var{n}, @var{k}) ## ## Compute the binomial coefficient or all combinations of @var{n}. ## If @var{n} is a scalar then, calculate the binomial coefficient ## of @var{n} and @var{k}, defined as ## ## @tex ## $$ ## {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!} ## = {n! \over k! (n-k)!} ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## / \ ## | n | n (n-1) (n-2) @dots{} (n-k+1) n! ## | | = ------------------------- = --------- ## | k | k! k! (n-k)! ## \ / ## @end group ## @end example ## @end ifnottex ## ## If @var{n} is a vector generate all combinations of the elements ## of @var{n}, taken @var{k} at a time, one row per combination. The ## resulting @var{c} has size @code{[nchoosek (length (@var{n}), ## @var{k}), @var{k}]}. ## ## @code{nchoosek} works only for non-negative integer arguments; use ## @code{bincoeff} for non-integer scalar arguments and for using vector ## arguments to compute many coefficients at once. ## ## @seealso{bincoeff} ## @end deftypefn ## Author: Rolf Fabian <fabian@tu-cottbus.de> ## Author: Paul Kienzle <pkienzle@users.sf.net> ## Author: Jaroslav Hajek function A = nchoosek (v, k) if (nargin != 2 || !isnumeric(k) || !isnumeric(v) || !isscalar(k) || (!isscalar(v) && !isvector(v))) print_usage (); endif if ((isscalar(v) && v < k) || k < 0 || k != round(k) || any (v < 0 || v != round(v))) error ("nchoosek: args are nonnegative integers with V not less than K"); endif n = length (v); if (n == 1) ## Improve precision at next step. k = min (k, v-k); A = round (prod ((v-k+1:v)./(1:k))); if (A*2*k*eps >= 0.5) warning ("nchoosek", "nchoosek: possible loss of precision"); endif elseif (k == 0) A = []; elseif (k == 1) A = v(:); elseif (k == n) A = v(:).'; elseif (k > n) A = zeros (0, k, class (v)); else p = cell (1, k); ## Hack: do the op in the smallest integer class possible to avoid ## moving too much data. if (n < intmax ("uint8")) cl = "uint8"; elseif (n < intmax ("uint16")) cl = "uint16"; elseif (n < intmax ("uint32")) cl = "uint32"; else ## This would exhaust memory anyway. cl = "double"; endif ## Use a generalized Pascal triangle. Traverse backwards to keep ## alphabetical order. for i = 1:k p{i} = zeros (0, i, cl); endfor s = ones (1, 1, cl); p{1} = n*s; for j = n-1:-1:1 for i = k:-1:2 q = p{i-1}; p{i} = [[repmat(s*j, rows (p{i-1}), 1), p{i-1}]; p{i}]; endfor p{1} = [j;p{1}]; endfor v = v(:); A = v(p{k}); endif endfunction %!warning (nchoosek(100,45)); %!error (nchoosek(100,45.5)); %!error (nchoosek(100,145)); %!assert (nchoosek(80,10), bincoeff(80,10)) %!assert (nchoosek(1:5,3),[1:3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2:4;2,3,5;2,4,5;3:5])