Mercurial > hg > octave-nkf
view scripts/special-matrix/toeplitz.m @ 9665:1dba57e9d08d
use blas_trans_type for xgemm
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Sat, 26 Sep 2009 10:41:07 +0200 |
parents | f0c3d3fc4903 |
children | 95c3e38098bf |
line wrap: on
line source
## Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2004, ## 2005, 2006, 2007, 2008, 2009 John W. Eaton ## Copyright (C) 2009 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} toeplitz (@var{c}, @var{r}) ## Return the Toeplitz matrix constructed given the first column @var{c}, ## and (optionally) the first row @var{r}. If the first element of @var{c} ## is not the same as the first element of @var{r}, the first element of ## @var{c} is used. If the second argument is omitted, the first row is ## taken to be the same as the first column. ## ## A square Toeplitz matrix has the form: ## @tex ## $$ ## \left[\matrix{c_0 & r_1 & r_2 & \cdots & r_n\cr ## c_1 & c_0 & r_1 & \cdots & r_{n-1}\cr ## c_2 & c_1 & c_0 & \cdots & r_{n-2}\cr ## \vdots & \vdots & \vdots & \ddots & \vdots\cr ## c_n & c_{n-1} & c_{n-2} & \ldots & c_0}\right] ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## c(0) r(1) r(2) @dots{} r(n) ## c(1) c(0) r(1) @dots{} r(n-1) ## c(2) c(1) c(0) @dots{} r(n-2) ## . , , . . ## . , , . . ## . , , . . ## c(n) c(n-1) c(n-2) @dots{} c(0) ## @end group ## @end example ## @end ifnottex ## @seealso{hankel, vander, sylvester_matrix, hilb, invhilb} ## @end deftypefn ## Author: jwe && jh function retval = toeplitz (c, r) if (nargin == 1) r = c; elseif (nargin != 2) print_usage (); endif if (! (isvector (c) && isvector (r))) error ("toeplitz: expecting vector arguments"); endif nc = length (r); nr = length (c); if (nr == 0 || nc == 0) ## Empty matrix. retval = zeros (nr, nc, class (c)); return; endif if (r (1) != c (1)) warning ("toeplitz: column wins diagonal conflict"); endif ## If we have a single complex argument, we want to return a ## Hermitian-symmetric matrix (actually, this will really only be ## Hermitian-symmetric if the first element of the vector is real). if (nargin == 1 && iscomplex (c)) c = conj (c); c(1) = conj (c(1)); endif if (issparse(c) && issparse(r)) c = c(:).'; r = r(:).'; cidx = find(c); ridx = find(r); ## Ignore the first element in r. ridx = ridx(ridx > 1); ## Form matrix. retval = spdiags(repmat(c(cidx),nr,1),1-cidx,nr,nc)+... spdiags(repmat(r(ridx),nr,1),ridx-1,nr,nc); else ## Concatenate data into a single column vector. data = [r(end:-1:2)(:); c(:)]; ## Get slices. slices = cellslices (data, nc:-1:1, nc+nr-1:-1:nr); ## Form matrix. retval = horzcat (slices{:}); endif endfunction %!assert((toeplitz (1) == 1 %! && toeplitz ([1, 2, 3], [1; -3; -5]) == [1, -3, -5; 2, 1, -3; 3, 2, 1] %! && toeplitz ([1, 2, 3], [1; -3i; -5i]) == [1, -3i, -5i; 2, 1, -3i; 3, 2, 1])); %!error toeplitz ([1, 2; 3, 4], 1); %!error toeplitz (); %!error toeplitz (1, 2, 3);