Mercurial > hg > octave-nkf
view liboctave/lo-mappers.cc @ 12107:1fc9fd052f0c release-3-2-x
fix typo in expm
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Wed, 25 Nov 2009 12:05:03 +0100 |
parents | 5d0dcd492f9f |
children | f80c566bc751 |
line wrap: on
line source
/* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cfloat> #include "lo-error.h" #include "lo-ieee.h" #include "lo-mappers.h" #include "lo-math.h" #include "lo-specfun.h" #include "lo-utils.h" #include "oct-cmplx.h" #include "f77-fcn.h" // double -> double mappers. double arg (double x) { return atan2 (0.0, x); } double conj (double x) { return x; } double fix (double x) { return x > 0 ? floor (x) : ceil (x); } double imag (double) { return 0.0; } double real (double x) { return x; } double xround (double x) { #if defined (HAVE_ROUND) return round (x); #else if (x >= 0) { double y = floor (x); if ((x - y) >= 0.5) y += 1.0; return y; } else { double y = ceil (x); if ((y - x) >= 0.5) y -= 1.0; return y; } #endif } double xtrunc (double x) { #if defined (HAVE_TRUNC) return trunc (x); #else return x > 0 ? floor (x) : ceil (x); #endif } double xroundb (double x) { double t = xround (x); if (fabs (x - t) == 0.5) t = 2 * xtrunc (0.5 * t); return t; } double signum (double x) { double tmp = 0.0; if (x < 0.0) tmp = -1.0; else if (x > 0.0) tmp = 1.0; return xisnan (x) ? octave_NaN : tmp; } double xlog2 (double x) { #if defined (HAVE_LOG2) return log2 (x); #else #if defined (M_LN2) static double ln2 = M_LN2; #else static double ln2 = log (2); #endif return log (x) / ln2; #endif } Complex xlog2 (const Complex& x) { #if defined (M_LN2) static double ln2 = M_LN2; #else static double ln2 = log (2); #endif return std::log (x) / ln2; } double xexp2 (double x) { #if defined (HAVE_EXP2) return exp2 (x); #else #if defined (M_LN2) static double ln2 = M_LN2; #else static double ln2 = log (2); #endif return exp (x * ln2); #endif } double xlog2 (double x, int& exp) { return frexp (x, &exp); } Complex xlog2 (const Complex& x, int& exp) { double ax = std::abs (x); double lax = xlog2 (ax, exp); return (ax != lax) ? (x / ax) * lax : x; } // double -> bool mappers. #if ! defined(HAVE_CMATH_ISNAN) bool xisnan (double x) { return lo_ieee_isnan (x); } #endif #if ! defined(HAVE_CMATH_ISFINITE) bool xfinite (double x) { return lo_ieee_finite (x); } #endif #if ! defined(HAVE_CMATH_ISINF) bool xisinf (double x) { return lo_ieee_isinf (x); } #endif bool octave_is_NA (double x) { return lo_ieee_is_NA (x); } bool octave_is_NaN_or_NA (double x) { return lo_ieee_isnan (x); } // (double, double) -> double mappers. // According to Matlab, is both args are NaN, the first one is returned. double xmin (double x, double y) { return xisnan (y) ? x : (x <= y ? x : y); } double xmax (double x, double y) { return xisnan (y) ? x : (x >= y ? x : y); } // complex -> complex mappers. Complex acos (const Complex& x) { static Complex i (0, 1); return -i * (log (x + i * (sqrt (1.0 - x*x)))); } Complex acosh (const Complex& x) { return log (x + sqrt (x*x - 1.0)); } Complex asin (const Complex& x) { static Complex i (0, 1); return -i * log (i*x + sqrt (1.0 - x*x)); } Complex asinh (const Complex& x) { return log (x + sqrt (x*x + 1.0)); } Complex atan (const Complex& x) { static Complex i (0, 1); return i * log ((i + x) / (i - x)) / 2.0; } Complex atanh (const Complex& x) { return log ((1.0 + x) / (1.0 - x)) / 2.0; } Complex ceil (const Complex& x) { return Complex (ceil (real (x)), ceil (imag (x))); } Complex fix (const Complex& x) { return Complex (fix (real (x)), fix (imag (x))); } Complex floor (const Complex& x) { return Complex (floor (real (x)), floor (imag (x))); } Complex xround (const Complex& x) { return Complex (xround (real (x)), xround (imag (x))); } Complex xroundb (const Complex& x) { return Complex (xroundb (real (x)), xroundb (imag (x))); } Complex signum (const Complex& x) { double tmp = abs (x); return tmp == 0 ? 0.0 : x / tmp; } // complex -> bool mappers. bool octave_is_NA (const Complex& x) { return (octave_is_NA (real (x)) || octave_is_NA (imag (x))); } bool octave_is_NaN_or_NA (const Complex& x) { return (xisnan (real (x)) || xisnan (imag (x))); } // (complex, complex) -> complex mappers. // FIXME -- need to handle NA too? Complex xmin (const Complex& x, const Complex& y) { return abs (x) <= abs (y) ? x : (xisnan (x) ? x : y); } Complex xmax (const Complex& x, const Complex& y) { return abs (x) >= abs (y) ? x : (xisnan (x) ? x : y); } // float -> float mappers. float arg (float x) { return atan2 (0.0f, x); } float conj (float x) { return x; } float fix (float x) { return x > 0 ? floor (x) : ceil (x); } float imag (float) { return 0.0; } float real (float x) { return x; } float xround (float x) { #if defined (HAVE_ROUND) return round (x); #else if (x >= 0) { float y = floor (x); if ((x - y) >= 0.5) y += 1.0; return y; } else { float y = ceil (x); if ((y - x) >= 0.5) y -= 1.0; return y; } #endif } float xtrunc (float x) { #if defined (HAVE_TRUNC) return trunc (x); #else return x > 0 ? floor (x) : ceil (x); #endif } float xroundb (float x) { float t = xround (x); if (fabs (x - t) == 0.5) t = 2 * xtrunc (0.5 * t); return t; } float signum (float x) { float tmp = 0.0; if (x < 0.0) tmp = -1.0; else if (x > 0.0) tmp = 1.0; return xisnan (x) ? octave_Float_NaN : tmp; } float xlog2 (float x) { #if defined (HAVE_LOG2) return log2 (x); #else #if defined (M_LN2) static float ln2 = M_LN2; #else static float ln2 = log2 (2); #endif return log (x) / ln2; #endif } FloatComplex xlog2 (const FloatComplex& x) { #if defined (M_LN2) static float ln2 = M_LN2; #else static float ln2 = log (2); #endif return std::log (x) / ln2; } float xexp2 (float x) { #if defined (HAVE_EXP2) return exp2 (x); #else #if defined (M_LN2) static float ln2 = M_LN2; #else static float ln2 = log2 (2); #endif return exp (x * ln2); #endif } float xlog2 (float x, int& exp) { return frexpf (x, &exp); } FloatComplex xlog2 (const FloatComplex& x, int& exp) { float ax = std::abs (x); float lax = xlog2 (ax, exp); return (ax != lax) ? (x / ax) * lax : x; } // float -> bool mappers. #if ! defined(HAVE_CMATH_ISNANF) bool xisnan (float x) { return lo_ieee_isnan (x); } #endif #if ! defined(HAVE_CMATH_ISFINITEF) bool xfinite (float x) { return lo_ieee_finite (x); } #endif #if ! defined(HAVE_CMATH_ISINFF) bool xisinf (float x) { return lo_ieee_isinf (x); } #endif bool octave_is_NA (float x) { return lo_ieee_is_NA (x); } bool octave_is_NaN_or_NA (float x) { return lo_ieee_isnan (x); } // (float, float) -> float mappers. // FIXME -- need to handle NA too? float xmin (float x, float y) { return xisnan (y) ? x : (x <= y ? x : y); } float xmax (float x, float y) { return xisnan (y) ? x : (x >= y ? x : y); } // complex -> complex mappers. FloatComplex acos (const FloatComplex& x) { static FloatComplex i (0, 1); return -i * (log (x + i * (sqrt (static_cast<float>(1.0) - x*x)))); } FloatComplex acosh (const FloatComplex& x) { return log (x + sqrt (x*x - static_cast<float>(1.0))); } FloatComplex asin (const FloatComplex& x) { static FloatComplex i (0, 1); return -i * log (i*x + sqrt (static_cast<float>(1.0) - x*x)); } FloatComplex asinh (const FloatComplex& x) { return log (x + sqrt (x*x + static_cast<float>(1.0))); } FloatComplex atan (const FloatComplex& x) { static FloatComplex i (0, 1); return i * log ((i + x) / (i - x)) / static_cast<float>(2.0); } FloatComplex atanh (const FloatComplex& x) { return log ((static_cast<float>(1.0) + x) / (static_cast<float>(1.0) - x)) / static_cast<float>(2.0); } FloatComplex ceil (const FloatComplex& x) { return FloatComplex (ceil (real (x)), ceil (imag (x))); } FloatComplex fix (const FloatComplex& x) { return FloatComplex (fix (real (x)), fix (imag (x))); } FloatComplex floor (const FloatComplex& x) { return FloatComplex (floor (real (x)), floor (imag (x))); } FloatComplex xround (const FloatComplex& x) { return FloatComplex (xround (real (x)), xround (imag (x))); } FloatComplex xroundb (const FloatComplex& x) { return FloatComplex (xroundb (real (x)), xroundb (imag (x))); } FloatComplex signum (const FloatComplex& x) { float tmp = abs (x); return tmp == 0 ? 0.0 : x / tmp; } // complex -> bool mappers. bool octave_is_NA (const FloatComplex& x) { return (octave_is_NA (real (x)) || octave_is_NA (imag (x))); } bool octave_is_NaN_or_NA (const FloatComplex& x) { return (xisnan (real (x)) || xisnan (imag (x))); } // (complex, complex) -> complex mappers. // FIXME -- need to handle NA too? FloatComplex xmin (const FloatComplex& x, const FloatComplex& y) { return abs (x) <= abs (y) ? x : (xisnan (x) ? x : y); } FloatComplex xmax (const FloatComplex& x, const FloatComplex& y) { return abs (x) >= abs (y) ? x : (xisnan (x) ? x : y); } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */