Mercurial > hg > octave-nkf
view liboctave/Sparse-op-defs.h @ 5874:210c5c98c403
[project @ 2006-07-01 02:33:45 by jwe]
author | jwe |
---|---|
date | Sat, 01 Jul 2006 02:33:46 +0000 |
parents | dfef2f909f34 |
children | 565d0cd4d9d0 |
line wrap: on
line source
/* Copyright (C) 2004 David Bateman Copyright (C) 1998-2004 Andy Adler Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #if !defined (octave_sparse_op_defs_h) #define octave_sparse_op_defs_h 1 #include "Array-util.h" #define SPARSE_BIN_OP_DECL(R, OP, X, Y) \ extern R OP (const X&, const Y&) #define SPARSE_CMP_OP_DECL(OP, X, Y) \ extern SparseBoolMatrix OP (const X&, const Y&) #define SPARSE_BOOL_OP_DECL(OP, X, Y) \ extern SparseBoolMatrix OP (const X&, const Y&) // matrix by scalar operations. #define SPARSE_SMS_BIN_OP_DECLS(R1, R2, M, S) \ SPARSE_BIN_OP_DECL (R1, operator +, M, S); \ SPARSE_BIN_OP_DECL (R1, operator -, M, S); \ SPARSE_BIN_OP_DECL (R2, operator *, M, S); \ SPARSE_BIN_OP_DECL (R2, operator /, M, S); #define SPARSE_SMS_BIN_OP_1(R, F, OP, M, S) \ R \ F (const M& m, const S& s) \ { \ octave_idx_type nr = m.rows (); \ octave_idx_type nc = m.cols (); \ \ R r (nr, nc, (0.0 OP s)); \ \ for (octave_idx_type j = 0; j < nc; j++) \ for (octave_idx_type i = m.cidx (j); i < m.cidx (j+1); i++) \ r.elem (m.ridx (i), j) = m.data (i) OP s; \ return r; \ } #define SPARSE_SMS_BIN_OP_2(R, F, OP, M, S) \ R \ F (const M& m, const S& s) \ { \ octave_idx_type nr = m.rows (); \ octave_idx_type nc = m.cols (); \ octave_idx_type nz = m.nnz (); \ \ R r (nr, nc, nz); \ \ for (octave_idx_type i = 0; i < nz; i++) \ { \ r.data(i) = m.data(i) OP s; \ r.ridx(i) = m.ridx(i); \ } \ for (octave_idx_type i = 0; i < nc + 1; i++) \ r.cidx(i) = m.cidx(i); \ \ r.maybe_compress (true); \ return r; \ } #define SPARSE_SMS_BIN_OPS(R1, R2, M, S) \ SPARSE_SMS_BIN_OP_1 (R1, operator +, +, M, S) \ SPARSE_SMS_BIN_OP_1 (R1, operator -, -, M, S) \ SPARSE_SMS_BIN_OP_2 (R2, operator *, *, M, S) \ SPARSE_SMS_BIN_OP_2 (R2, operator /, /, M, S) #define SPARSE_SMS_CMP_OP_DECLS(M, S) \ SPARSE_CMP_OP_DECL (mx_el_lt, M, S); \ SPARSE_CMP_OP_DECL (mx_el_le, M, S); \ SPARSE_CMP_OP_DECL (mx_el_ge, M, S); \ SPARSE_CMP_OP_DECL (mx_el_gt, M, S); \ SPARSE_CMP_OP_DECL (mx_el_eq, M, S); \ SPARSE_CMP_OP_DECL (mx_el_ne, M, S); #define SPARSE_SMS_EQNE_OP_DECLS(M, S) \ SPARSE_CMP_OP_DECL (mx_el_eq, M, S); \ SPARSE_CMP_OP_DECL (mx_el_ne, M, S); #define SPARSE_SMS_CMP_OP(F, OP, M, MZ, MC, S, SZ, SC) \ SparseBoolMatrix \ F (const M& m, const S& s) \ { \ /* Count num of non-zero elements */ \ octave_idx_type nel = 0; \ octave_idx_type nz = m.nnz (); \ if (MC (MZ) OP SC (s)) \ nel += m.numel() - nz; \ for (octave_idx_type i = 0; i < nz; i++) \ if (MC (m.data (i)) OP SC (s)) \ nel++; \ \ octave_idx_type nr = m.rows (); \ octave_idx_type nc = m.cols (); \ SparseBoolMatrix r (nr, nc, nel); \ \ if (nr > 0 && nc > 0) \ { \ if (MC (MZ) OP SC (s)) \ { \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < nc; j++) \ { \ for (octave_idx_type i = 0; i < nr; i++) \ { \ bool el = MC (m.elem(i, j)) OP SC (s); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = i; \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ else \ { \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < nc; j++) \ { \ for (octave_idx_type i = m.cidx(j); i < m.cidx(j+1); i++) \ { \ bool el = MC (m.data(i)) OP SC (s); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = m.ridx(i); \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ } \ return r; \ } #define SPARSE_SMS_CMP_OPS(M, MZ, CM, S, SZ, CS) \ SPARSE_SMS_CMP_OP (mx_el_lt, <, M, MZ, CM, S, SZ, CS) \ SPARSE_SMS_CMP_OP (mx_el_le, <=, M, MZ, CM, S, SZ, CS) \ SPARSE_SMS_CMP_OP (mx_el_ge, >=, M, MZ, CM, S, SZ, CS) \ SPARSE_SMS_CMP_OP (mx_el_gt, >, M, MZ, CM, S, SZ, CS) \ SPARSE_SMS_CMP_OP (mx_el_eq, ==, M, MZ, , S, SZ, ) \ SPARSE_SMS_CMP_OP (mx_el_ne, !=, M, MZ, , S, SZ, ) #define SPARSE_SMS_EQNE_OPS(M, MZ, CM, S, SZ, CS) \ SPARSE_SMS_CMP_OP (mx_el_eq, ==, M, MZ, , S, SZ, ) \ SPARSE_SMS_CMP_OP (mx_el_ne, !=, M, MZ, , S, SZ, ) #define SPARSE_SMS_BOOL_OP_DECLS(M, S) \ SPARSE_BOOL_OP_DECL (mx_el_and, M, S); \ SPARSE_BOOL_OP_DECL (mx_el_or, M, S); #define SPARSE_SMS_BOOL_OP(F, OP, M, S, LHS_ZERO, RHS_ZERO) \ SparseBoolMatrix \ F (const M& m, const S& s) \ { \ /* Count num of non-zero elements */ \ octave_idx_type nel = 0; \ octave_idx_type nz = m.nnz (); \ if (LHS_ZERO OP (s != RHS_ZERO)) \ nel += m.numel() - nz; \ for (octave_idx_type i = 0; i < nz; i++) \ if ((m.data(i) != LHS_ZERO) OP (s != RHS_ZERO))\ nel++; \ \ octave_idx_type nr = m.rows (); \ octave_idx_type nc = m.cols (); \ SparseBoolMatrix r (nr, nc, nel); \ \ if (nr > 0 && nc > 0) \ { \ if (LHS_ZERO OP (s != RHS_ZERO)) \ { \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < nc; j++) \ { \ for (octave_idx_type i = 0; i < nr; i++) \ { \ bool el = (m.elem(i, j) != LHS_ZERO) OP (s != RHS_ZERO); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = i; \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ else \ { \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < nc; j++) \ { \ for (octave_idx_type i = m.cidx(j); i < m.cidx(j+1); i++) \ { \ bool el = (m.data(i) != LHS_ZERO) OP (s != RHS_ZERO); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = m.ridx(i); \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ } \ return r; \ } #define SPARSE_SMS_BOOL_OPS2(M, S, LHS_ZERO, RHS_ZERO) \ SPARSE_SMS_BOOL_OP (mx_el_and, &&, M, S, LHS_ZERO, RHS_ZERO) \ SPARSE_SMS_BOOL_OP (mx_el_or, ||, M, S, LHS_ZERO, RHS_ZERO) #define SPARSE_SMS_BOOL_OPS(M, S, ZERO) \ SPARSE_SMS_BOOL_OPS2(M, S, ZERO, ZERO) #define SPARSE_SMS_OP_DECLS(R1, R2, M, S) \ SPARSE_SMS_BIN_OP_DECLS (R1, R2, M, S) \ SPARSE_SMS_CMP_OP_DECLS (M, S) \ SPARSE_SMS_BOOL_OP_DECLS (M, S) // scalar by matrix operations. #define SPARSE_SSM_BIN_OP_DECLS(R1, R2, S, M) \ SPARSE_BIN_OP_DECL (R1, operator +, S, M); \ SPARSE_BIN_OP_DECL (R1, operator -, S, M); \ SPARSE_BIN_OP_DECL (R2, operator *, S, M); \ SPARSE_BIN_OP_DECL (R2, operator /, S, M); #define SPARSE_SSM_BIN_OP_1(R, F, OP, S, M) \ R \ F (const S& s, const M& m) \ { \ octave_idx_type nr = m.rows (); \ octave_idx_type nc = m.cols (); \ \ R r (nr, nc, (s OP 0.0)); \ \ for (octave_idx_type j = 0; j < nc; j++) \ for (octave_idx_type i = m.cidx (j); i < m.cidx (j+1); i++) \ r.elem (m.ridx (i), j) = s OP m.data (i); \ \ return r; \ } #define SPARSE_SSM_BIN_OP_2(R, F, OP, S, M) \ R \ F (const S& s, const M& m) \ { \ octave_idx_type nr = m.rows (); \ octave_idx_type nc = m.cols (); \ octave_idx_type nz = m.nnz (); \ \ R r (nr, nc, nz); \ \ for (octave_idx_type i = 0; i < nz; i++) \ { \ r.data(i) = s OP m.data(i); \ r.ridx(i) = m.ridx(i); \ } \ for (octave_idx_type i = 0; i < nc + 1; i++) \ r.cidx(i) = m.cidx(i); \ \ r.maybe_compress(true); \ return r; \ } #define SPARSE_SSM_BIN_OPS(R1, R2, S, M) \ SPARSE_SSM_BIN_OP_1 (R1, operator +, +, S, M) \ SPARSE_SSM_BIN_OP_1 (R1, operator -, -, S, M) \ SPARSE_SSM_BIN_OP_2 (R2, operator *, *, S, M) \ SPARSE_SSM_BIN_OP_2 (R2, operator /, /, S, M) #define SPARSE_SSM_CMP_OP_DECLS(S, M) \ SPARSE_CMP_OP_DECL (mx_el_lt, S, M); \ SPARSE_CMP_OP_DECL (mx_el_le, S, M); \ SPARSE_CMP_OP_DECL (mx_el_ge, S, M); \ SPARSE_CMP_OP_DECL (mx_el_gt, S, M); \ SPARSE_CMP_OP_DECL (mx_el_eq, S, M); \ SPARSE_CMP_OP_DECL (mx_el_ne, S, M); #define SPARSE_SSM_EQNE_OP_DECLS(S, M) \ SPARSE_CMP_OP_DECL (mx_el_eq, S, M); \ SPARSE_CMP_OP_DECL (mx_el_ne, S, M); #define SPARSE_SSM_CMP_OP(F, OP, S, SZ, SC, M, MZ, MC) \ SparseBoolMatrix \ F (const S& s, const M& m) \ { \ /* Count num of non-zero elements */ \ octave_idx_type nel = 0; \ octave_idx_type nz = m.nnz (); \ if (SC (s) OP MC (MZ)) \ nel += m.numel() - nz; \ for (octave_idx_type i = 0; i < nz; i++) \ if (SC (s) OP MC (m.data (i))) \ nel++; \ \ octave_idx_type nr = m.rows (); \ octave_idx_type nc = m.cols (); \ SparseBoolMatrix r (nr, nc, nel); \ \ if (nr > 0 && nc > 0) \ { \ if (SC (s) OP MC (MZ))\ { \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < nc; j++) \ { \ for (octave_idx_type i = 0; i < nr; i++) \ { \ bool el = SC (s) OP MC (m.elem(i, j)); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = i; \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ else \ { \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < nc; j++) \ { \ for (octave_idx_type i = m.cidx(j); i < m.cidx(j+1); i++) \ { \ bool el = SC (s) OP MC (m.data(i)); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = m.ridx(i); \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ } \ return r; \ } #define SPARSE_SSM_CMP_OPS(S, SZ, SC, M, MZ, MC) \ SPARSE_SSM_CMP_OP (mx_el_lt, <, S, SZ, SC, M, MZ, MC) \ SPARSE_SSM_CMP_OP (mx_el_le, <=, S, SZ, SC, M, MZ, MC) \ SPARSE_SSM_CMP_OP (mx_el_ge, >=, S, SZ, SC, M, MZ, MC) \ SPARSE_SSM_CMP_OP (mx_el_gt, >, S, SZ, SC, M, MZ, MC) \ SPARSE_SSM_CMP_OP (mx_el_eq, ==, S, SZ, , M, MZ, ) \ SPARSE_SSM_CMP_OP (mx_el_ne, !=, S, SZ, , M, MZ, ) #define SPARSE_SSM_EQNE_OPS(S, SZ, SC, M, MZ, MC) \ SPARSE_SSM_CMP_OP (mx_el_eq, ==, S, SZ, , M, MZ, ) \ SPARSE_SSM_CMP_OP (mx_el_ne, !=, S, SZ, , M, MZ, ) #define SPARSE_SSM_BOOL_OP_DECLS(S, M) \ SPARSE_BOOL_OP_DECL (mx_el_and, S, M); \ SPARSE_BOOL_OP_DECL (mx_el_or, S, M); \ #define SPARSE_SSM_BOOL_OP(F, OP, S, M, LHS_ZERO, RHS_ZERO) \ SparseBoolMatrix \ F (const S& s, const M& m) \ { \ /* Count num of non-zero elements */ \ octave_idx_type nel = 0; \ octave_idx_type nz = m.nnz (); \ if ((s != LHS_ZERO) OP RHS_ZERO) \ nel += m.numel() - nz; \ for (octave_idx_type i = 0; i < nz; i++) \ if ((s != LHS_ZERO) OP m.data(i) != RHS_ZERO) \ nel++; \ \ octave_idx_type nr = m.rows (); \ octave_idx_type nc = m.cols (); \ SparseBoolMatrix r (nr, nc, nel); \ \ if (nr > 0 && nc > 0) \ { \ if ((s != LHS_ZERO) OP RHS_ZERO) \ { \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < nc; j++) \ { \ for (octave_idx_type i = 0; i < nr; i++) \ { \ bool el = (s != LHS_ZERO) OP (m.elem(i, j) != RHS_ZERO); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = i; \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ else \ { \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < nc; j++) \ { \ for (octave_idx_type i = m.cidx(j); i < m.cidx(j+1); i++) \ { \ bool el = (s != LHS_ZERO) OP (m.data(i) != RHS_ZERO); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = m.ridx(i); \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ } \ return r; \ } #define SPARSE_SSM_BOOL_OPS2(S, M, LHS_ZERO, RHS_ZERO) \ SPARSE_SSM_BOOL_OP (mx_el_and, &&, S, M, LHS_ZERO, RHS_ZERO) \ SPARSE_SSM_BOOL_OP (mx_el_or, ||, S, M, LHS_ZERO, RHS_ZERO) #define SPARSE_SSM_BOOL_OPS(S, M, ZERO) \ SPARSE_SSM_BOOL_OPS2(S, M, ZERO, ZERO) #define SPARSE_SSM_OP_DECLS(R1, R2, S, M) \ SPARSE_SSM_BIN_OP_DECLS (R1, R2, S, M) \ SPARSE_SSM_CMP_OP_DECLS (S, M) \ SPARSE_SSM_BOOL_OP_DECLS (S, M) \ // matrix by matrix operations. #define SPARSE_SMSM_BIN_OP_DECLS(R1, R2, M1, M2) \ SPARSE_BIN_OP_DECL (R1, operator +, M1, M2); \ SPARSE_BIN_OP_DECL (R1, operator -, M1, M2); \ SPARSE_BIN_OP_DECL (R2, product, M1, M2); \ SPARSE_BIN_OP_DECL (R2, quotient, M1, M2); #define SPARSE_SMSM_BIN_OP_1(R, F, OP, M1, M2) \ R \ F (const M1& m1, const M2& m2) \ { \ R r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr != m2_nr || m1_nc != m2_nc) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ else \ { \ r = R (m1_nr, m1_nc, (m1.nnz () + m2.nnz ())); \ \ octave_idx_type jx = 0; \ r.cidx (0) = 0; \ for (octave_idx_type i = 0 ; i < m1_nc ; i++) \ { \ octave_idx_type ja = m1.cidx(i); \ octave_idx_type ja_max = m1.cidx(i+1); \ bool ja_lt_max= ja < ja_max; \ \ octave_idx_type jb = m2.cidx(i); \ octave_idx_type jb_max = m2.cidx(i+1); \ bool jb_lt_max = jb < jb_max; \ \ while (ja_lt_max || jb_lt_max ) \ { \ OCTAVE_QUIT; \ if ((! jb_lt_max) || \ (ja_lt_max && (m1.ridx(ja) < m2.ridx(jb)))) \ { \ r.ridx(jx) = m1.ridx(ja); \ r.data(jx) = m1.data(ja) OP 0.; \ jx++; \ ja++; \ ja_lt_max= ja < ja_max; \ } \ else if (( !ja_lt_max ) || \ (jb_lt_max && (m2.ridx(jb) < m1.ridx(ja)) ) ) \ { \ r.ridx(jx) = m2.ridx(jb); \ r.data(jx) = 0. OP m2.data(jb); \ jx++; \ jb++; \ jb_lt_max= jb < jb_max; \ } \ else \ { \ if ((m1.data(ja) OP m2.data(jb)) != 0.) \ { \ r.data(jx) = m1.data(ja) OP m2.data(jb); \ r.ridx(jx) = m1.ridx(ja); \ jx++; \ } \ ja++; \ ja_lt_max= ja < ja_max; \ jb++; \ jb_lt_max= jb < jb_max; \ } \ } \ r.cidx(i+1) = jx; \ } \ \ r.maybe_compress (); \ } \ \ return r; \ } #define SPARSE_SMSM_BIN_OP_2(R, F, OP, M1, M2) \ R \ F (const M1& m1, const M2& m2) \ { \ R r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr != m2_nr || m1_nc != m2_nc) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ else \ { \ r = R (m1_nr, m1_nc, (m1.nnz () > m2.nnz () ? m1.nnz () : m2.nnz ())); \ \ octave_idx_type jx = 0; \ r.cidx (0) = 0; \ for (octave_idx_type i = 0 ; i < m1_nc ; i++) \ { \ octave_idx_type ja = m1.cidx(i); \ octave_idx_type ja_max = m1.cidx(i+1); \ bool ja_lt_max= ja < ja_max; \ \ octave_idx_type jb = m2.cidx(i); \ octave_idx_type jb_max = m2.cidx(i+1); \ bool jb_lt_max = jb < jb_max; \ \ while (ja_lt_max || jb_lt_max ) \ { \ OCTAVE_QUIT; \ if ((! jb_lt_max) || \ (ja_lt_max && (m1.ridx(ja) < m2.ridx(jb)))) \ { \ ja++; ja_lt_max= ja < ja_max; \ } \ else if (( !ja_lt_max ) || \ (jb_lt_max && (m2.ridx(jb) < m1.ridx(ja)) ) ) \ { \ jb++; jb_lt_max= jb < jb_max; \ } \ else \ { \ if ((m1.data(ja) OP m2.data(jb)) != 0.) \ { \ r.data(jx) = m1.data(ja) OP m2.data(jb); \ r.ridx(jx) = m1.ridx(ja); \ jx++; \ } \ ja++; ja_lt_max= ja < ja_max; \ jb++; jb_lt_max= jb < jb_max; \ } \ } \ r.cidx(i+1) = jx; \ } \ \ r.maybe_compress (); \ } \ \ return r; \ } #define SPARSE_SMSM_BIN_OP_3(R, F, OP, M1, M2) \ R \ F (const M1& m1, const M2& m2) \ { \ R r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr != m2_nr || m1_nc != m2_nc) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ else \ { \ \ /* FIXME Kludge... Always double/Complex, so Complex () */ \ r = R (m1_nr, m1_nc, (Complex () OP Complex ())); \ \ for (octave_idx_type i = 0 ; i < m1_nc ; i++) \ { \ octave_idx_type ja = m1.cidx(i); \ octave_idx_type ja_max = m1.cidx(i+1); \ bool ja_lt_max= ja < ja_max; \ \ octave_idx_type jb = m2.cidx(i); \ octave_idx_type jb_max = m2.cidx(i+1); \ bool jb_lt_max = jb < jb_max; \ \ while (ja_lt_max || jb_lt_max ) \ { \ OCTAVE_QUIT; \ if ((! jb_lt_max) || \ (ja_lt_max && (m1.ridx(ja) < m2.ridx(jb)))) \ { \ /* keep those kludges coming */ \ r.elem(m1.ridx(ja),i) = m1.data(ja) OP Complex (); \ ja++; \ ja_lt_max= ja < ja_max; \ } \ else if (( !ja_lt_max ) || \ (jb_lt_max && (m2.ridx(jb) < m1.ridx(ja)) ) ) \ { \ /* keep those kludges coming */ \ r.elem(m2.ridx(jb),i) = Complex () OP m2.data(jb); \ jb++; \ jb_lt_max= jb < jb_max; \ } \ else \ { \ r.elem(m1.ridx(ja),i) = m1.data(ja) OP m2.data(jb); \ ja++; \ ja_lt_max= ja < ja_max; \ jb++; \ jb_lt_max= jb < jb_max; \ } \ } \ } \ r.maybe_compress (true); \ } \ \ return r; \ } // Note that SM ./ SM needs to take into account the NaN and Inf values // implied by the division by zero. // FIXME Are the NaNs double(NaN) or Complex(NaN,Nan) in the complex // case? #define SPARSE_SMSM_BIN_OPS(R1, R2, M1, M2) \ SPARSE_SMSM_BIN_OP_1 (R1, operator +, +, M1, M2) \ SPARSE_SMSM_BIN_OP_1 (R1, operator -, -, M1, M2) \ SPARSE_SMSM_BIN_OP_2 (R2, product, *, M1, M2) \ SPARSE_SMSM_BIN_OP_3 (R2, quotient, /, M1, M2) #define SPARSE_SMSM_CMP_OP_DECLS(M1, M2) \ SPARSE_CMP_OP_DECL (mx_el_lt, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_le, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_ge, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_gt, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_eq, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_ne, M1, M2); #define SPARSE_SMSM_EQNE_OP_DECLS(M1, M2) \ SPARSE_CMP_OP_DECL (mx_el_eq, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_ne, M1, M2); #define SPARSE_SMSM_CMP_OP(F, OP, M1, C1, M2, C2) \ SparseBoolMatrix \ F (const M1& m1, const M2& m2) \ { \ SparseBoolMatrix r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr == m2_nr && m1_nc == m2_nc) \ { \ if (m1_nr != 0 || m1_nc != 0) \ { \ /* Count num of non-zero elements */ \ octave_idx_type nel = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ for (octave_idx_type i = 0; i < m1_nr; i++) \ if (C1 (m1.elem(i, j)) OP C2 (m2.elem(i, j))) \ nel++; \ \ r = SparseBoolMatrix (m1_nr, m1_nc, nel); \ \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ { \ for (octave_idx_type i = 0; i < m1_nr; i++) \ { \ bool el = C1 (m1.elem(i, j)) OP C2 (m2.elem(i, j)); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = i; \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ } \ else \ { \ if ((m1_nr != 0 || m1_nc != 0) && (m2_nr != 0 || m2_nc != 0)) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ } \ return r; \ } #define SPARSE_SMSM_CMP_OPS(M1, Z1, C1, M2, Z2, C2) \ SPARSE_SMSM_CMP_OP (mx_el_lt, <, M1, C1, M2, C2) \ SPARSE_SMSM_CMP_OP (mx_el_le, <=, M1, C1, M2, C2) \ SPARSE_SMSM_CMP_OP (mx_el_ge, >=, M1, C1, M2, C2) \ SPARSE_SMSM_CMP_OP (mx_el_gt, >, M1, C1, M2, C2) \ SPARSE_SMSM_CMP_OP (mx_el_eq, ==, M1, , M2, ) \ SPARSE_SMSM_CMP_OP (mx_el_ne, !=, M1, , M2, ) #define SPARSE_SMSM_EQNE_OPS(M1, Z1, C1, M2, Z2, C2) \ SPARSE_SMSM_CMP_OP (mx_el_eq, ==, M1, , M2, ) \ SPARSE_SMSM_CMP_OP (mx_el_ne, !=, M1, , M2, ) #define SPARSE_SMSM_BOOL_OP_DECLS(M1, M2) \ SPARSE_BOOL_OP_DECL (mx_el_and, M1, M2); \ SPARSE_BOOL_OP_DECL (mx_el_or, M1, M2); #define SPARSE_SMSM_BOOL_OP(F, OP, M1, M2, LHS_ZERO, RHS_ZERO) \ SparseBoolMatrix \ F (const M1& m1, const M2& m2) \ { \ SparseBoolMatrix r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr == m2_nr && m1_nc == m2_nc) \ { \ if (m1_nr != 0 || m1_nc != 0) \ { \ /* Count num of non-zero elements */ \ octave_idx_type nel = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ for (octave_idx_type i = 0; i < m1_nr; i++) \ if ((m1.elem(i, j) != LHS_ZERO) \ OP (m2.elem(i, j) != RHS_ZERO)) \ nel++; \ \ r = SparseBoolMatrix (m1_nr, m1_nc, nel); \ \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ { \ for (octave_idx_type i = 0; i < m1_nr; i++) \ { \ bool el = (m1.elem(i, j) != LHS_ZERO) \ OP (m2.elem(i, j) != RHS_ZERO); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = i; \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ } \ else \ { \ if ((m1_nr != 0 || m1_nc != 0) && (m2_nr != 0 || m2_nc != 0)) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ } \ return r; \ } #define SPARSE_SMSM_BOOL_OPS2(M1, M2, LHS_ZERO, RHS_ZERO) \ SPARSE_SMSM_BOOL_OP (mx_el_and, &&, M1, M2, LHS_ZERO, RHS_ZERO) \ SPARSE_SMSM_BOOL_OP (mx_el_or, ||, M1, M2, LHS_ZERO, RHS_ZERO) \ #define SPARSE_SMSM_BOOL_OPS(M1, M2, ZERO) \ SPARSE_SMSM_BOOL_OPS2(M1, M2, ZERO, ZERO) #define SPARSE_SMSM_OP_DECLS(R1, R2, M1, M2) \ SPARSE_SMSM_BIN_OP_DECLS (R1, R2, M1, M2) \ SPARSE_SMSM_CMP_OP_DECLS (M1, M2) \ SPARSE_SMSM_BOOL_OP_DECLS (M1, M2) // matrix by matrix operations. #define SPARSE_MSM_BIN_OP_DECLS(R1, R2, M1, M2) \ SPARSE_BIN_OP_DECL (R1, operator +, M1, M2); \ SPARSE_BIN_OP_DECL (R1, operator -, M1, M2); \ SPARSE_BIN_OP_DECL (R2, product, M1, M2); \ SPARSE_BIN_OP_DECL (R2, quotient, M1, M2); #define SPARSE_MSM_BIN_OP_1(R, F, OP, M1, M2) \ R \ F (const M1& m1, const M2& m2) \ { \ R r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr != m2_nr || m1_nc != m2_nc) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ else \ { \ r = R (m1_nr, m1_nc); \ \ for (octave_idx_type j = 0; j < m1_nc; j++) \ for (octave_idx_type i = 0; i < m1_nr; i++) \ r.elem (i, j) = m1.elem (i, j) OP m2.elem (i, j); \ } \ return r; \ } #define SPARSE_MSM_BIN_OP_2(R, F, OP, M1, M2, ZERO) \ R \ F (const M1& m1, const M2& m2) \ { \ R r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr != m2_nr || m1_nc != m2_nc) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ else \ { \ /* Count num of non-zero elements */ \ octave_idx_type nel = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ for (octave_idx_type i = 0; i < m1_nr; i++) \ if ((m1.elem(i, j) OP m2.elem(i, j)) != ZERO) \ nel++; \ \ r = R (m1_nr, m1_nc, nel); \ \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0 ; j < m1_nc ; j++) \ { \ for (octave_idx_type i = 0 ; i < m1_nr ; i++) \ { \ if ((m1.elem(i, j) OP m2.elem(i, j)) != ZERO) \ { \ r.data (ii) = m1.elem(i, j) OP m2.elem(i,j); \ r.ridx (ii++) = i; \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ \ return r; \ } // FIXME Pass a specific ZERO value #define SPARSE_MSM_BIN_OPS(R1, R2, M1, M2) \ SPARSE_MSM_BIN_OP_1 (R1, operator +, +, M1, M2) \ SPARSE_MSM_BIN_OP_1 (R1, operator -, -, M1, M2) \ SPARSE_MSM_BIN_OP_2 (R2, product, *, M1, M2, 0.0) \ SPARSE_MSM_BIN_OP_2 (R2, quotient, /, M1, M2, 0.0) #define SPARSE_MSM_CMP_OP_DECLS(M1, M2) \ SPARSE_CMP_OP_DECL (mx_el_lt, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_le, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_ge, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_gt, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_eq, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_ne, M1, M2); #define SPARSE_MSM_EQNE_OP_DECLS(M1, M2) \ SPARSE_CMP_OP_DECL (mx_el_eq, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_ne, M1, M2); #define SPARSE_MSM_CMP_OP(F, OP, M1, C1, M2, C2) \ SparseBoolMatrix \ F (const M1& m1, const M2& m2) \ { \ SparseBoolMatrix r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr == m2_nr && m1_nc == m2_nc) \ { \ if (m1_nr != 0 || m1_nc != 0) \ { \ /* Count num of non-zero elements */ \ octave_idx_type nel = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ for (octave_idx_type i = 0; i < m1_nr; i++) \ if (C1 (m1.elem(i, j)) OP C2 (m2.elem(i, j))) \ nel++; \ \ r = SparseBoolMatrix (m1_nr, m1_nc, nel); \ \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ { \ for (octave_idx_type i = 0; i < m1_nr; i++) \ { \ bool el = C1 (m1.elem(i, j)) OP C2 (m2.elem(i, j)); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = i; \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ } \ else \ { \ if ((m1_nr != 0 || m1_nc != 0) && (m2_nr != 0 || m2_nc != 0)) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ } \ return r; \ } #define SPARSE_MSM_CMP_OPS(M1, Z1, C1, M2, Z2, C2) \ SPARSE_MSM_CMP_OP (mx_el_lt, <, M1, C1, M2, C2) \ SPARSE_MSM_CMP_OP (mx_el_le, <=, M1, C1, M2, C2) \ SPARSE_MSM_CMP_OP (mx_el_ge, >=, M1, C1, M2, C2) \ SPARSE_MSM_CMP_OP (mx_el_gt, >, M1, C1, M2, C2) \ SPARSE_MSM_CMP_OP (mx_el_eq, ==, M1, , M2, ) \ SPARSE_MSM_CMP_OP (mx_el_ne, !=, M1, , M2, ) #define SPARSE_MSM_EQNE_OPS(M1, Z1, C1, M2, Z2, C2) \ SPARSE_MSM_CMP_OP (mx_el_eq, ==, M1, , M2, ) \ SPARSE_MSM_CMP_OP (mx_el_ne, !=, M1, , M2, ) #define SPARSE_MSM_BOOL_OP_DECLS(M1, M2) \ SPARSE_BOOL_OP_DECL (mx_el_and, M1, M2); \ SPARSE_BOOL_OP_DECL (mx_el_or, M1, M2); #define SPARSE_MSM_BOOL_OP(F, OP, M1, M2, LHS_ZERO, RHS_ZERO) \ SparseBoolMatrix \ F (const M1& m1, const M2& m2) \ { \ SparseBoolMatrix r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr == m2_nr && m1_nc == m2_nc) \ { \ if (m1_nr != 0 || m1_nc != 0) \ { \ /* Count num of non-zero elements */ \ octave_idx_type nel = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ for (octave_idx_type i = 0; i < m1_nr; i++) \ if ((m1.elem(i, j) != LHS_ZERO) \ OP (m2.elem(i, j) != RHS_ZERO)) \ nel++; \ \ r = SparseBoolMatrix (m1_nr, m1_nc, nel); \ \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ { \ for (octave_idx_type i = 0; i < m1_nr; i++) \ { \ bool el = (m1.elem(i, j) != LHS_ZERO) \ OP (m2.elem(i, j) != RHS_ZERO); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = i; \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ } \ else \ { \ if ((m1_nr != 0 || m1_nc != 0) && (m2_nr != 0 || m2_nc != 0)) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ } \ return r; \ } #define SPARSE_MSM_BOOL_OPS2(M1, M2, LHS_ZERO, RHS_ZERO) \ SPARSE_MSM_BOOL_OP (mx_el_and, &&, M1, M2, LHS_ZERO, RHS_ZERO) \ SPARSE_MSM_BOOL_OP (mx_el_or, ||, M1, M2, LHS_ZERO, RHS_ZERO) \ #define SPARSE_MSM_BOOL_OPS(M1, M2, ZERO) \ SPARSE_MSM_BOOL_OPS2(M1, M2, ZERO, ZERO) #define SPARSE_MSM_OP_DECLS(R1, R2, M1, M2) \ SPARSE_MSM_BIN_OP_DECLS (R1, R2, M1, M2) \ SPARSE_MSM_CMP_OP_DECLS (M1, M2) \ SPARSE_MSM_BOOL_OP_DECLS (M1, M2) // matrix by matrix operations. #define SPARSE_SMM_BIN_OP_DECLS(R1, R2, M1, M2) \ SPARSE_BIN_OP_DECL (R1, operator +, M1, M2); \ SPARSE_BIN_OP_DECL (R1, operator -, M1, M2); \ SPARSE_BIN_OP_DECL (R2, product, M1, M2); \ SPARSE_BIN_OP_DECL (R2, quotient, M1, M2); #define SPARSE_SMM_BIN_OP_1(R, F, OP, M1, M2) \ R \ F (const M1& m1, const M2& m2) \ { \ R r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr != m2_nr || m1_nc != m2_nc) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ else \ { \ r = R (m1_nr, m1_nc); \ \ for (octave_idx_type j = 0; j < m1_nc; j++) \ for (octave_idx_type i = 0; i < m1_nr; i++) \ r.elem (i, j) = m1.elem (i, j) OP m2.elem (i, j); \ } \ return r; \ } #define SPARSE_SMM_BIN_OP_2(R, F, OP, M1, M2, ZERO) \ R \ F (const M1& m1, const M2& m2) \ { \ R r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr != m2_nr || m1_nc != m2_nc) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ else \ { \ /* Count num of non-zero elements */ \ octave_idx_type nel = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ for (octave_idx_type i = 0; i < m1_nr; i++) \ if ((m1.elem(i, j) OP m2.elem(i, j)) != ZERO) \ nel++; \ \ r = R (m1_nr, m1_nc, nel); \ \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0 ; j < m1_nc ; j++) \ { \ for (octave_idx_type i = 0 ; i < m1_nr ; i++) \ { \ if ((m1.elem(i, j) OP m2.elem(i, j)) != ZERO) \ { \ r.data (ii) = m1.elem(i, j) OP m2.elem(i,j); \ r.ridx (ii++) = i; \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ \ return r; \ } // FIXME Pass a specific ZERO value #define SPARSE_SMM_BIN_OPS(R1, R2, M1, M2) \ SPARSE_SMM_BIN_OP_1 (R1, operator +, +, M1, M2) \ SPARSE_SMM_BIN_OP_1 (R1, operator -, -, M1, M2) \ SPARSE_SMM_BIN_OP_2 (R2, product, *, M1, M2, 0.0) \ SPARSE_SMM_BIN_OP_2 (R2, quotient, /, M1, M2, 0.0) #define SPARSE_SMM_CMP_OP_DECLS(M1, M2) \ SPARSE_CMP_OP_DECL (mx_el_lt, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_le, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_ge, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_gt, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_eq, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_ne, M1, M2); #define SPARSE_SMM_EQNE_OP_DECLS(M1, M2) \ SPARSE_CMP_OP_DECL (mx_el_eq, M1, M2); \ SPARSE_CMP_OP_DECL (mx_el_ne, M1, M2); #define SPARSE_SMM_CMP_OP(F, OP, M1, C1, M2, C2) \ SparseBoolMatrix \ F (const M1& m1, const M2& m2) \ { \ SparseBoolMatrix r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr == m2_nr && m1_nc == m2_nc) \ { \ if (m1_nr != 0 || m1_nc != 0) \ { \ /* Count num of non-zero elements */ \ octave_idx_type nel = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ for (octave_idx_type i = 0; i < m1_nr; i++) \ if (C1 (m1.elem(i, j)) OP C2 (m2.elem(i, j))) \ nel++; \ \ r = SparseBoolMatrix (m1_nr, m1_nc, nel); \ \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ { \ for (octave_idx_type i = 0; i < m1_nr; i++) \ { \ bool el = C1 (m1.elem(i, j)) OP C2 (m2.elem(i, j)); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = i; \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ } \ else \ { \ if ((m1_nr != 0 || m1_nc != 0) && (m2_nr != 0 || m2_nc != 0)) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ } \ return r; \ } #define SPARSE_SMM_CMP_OPS(M1, Z1, C1, M2, Z2, C2) \ SPARSE_SMM_CMP_OP (mx_el_lt, <, M1, C1, M2, C2) \ SPARSE_SMM_CMP_OP (mx_el_le, <=, M1, C1, M2, C2) \ SPARSE_SMM_CMP_OP (mx_el_ge, >=, M1, C1, M2, C2) \ SPARSE_SMM_CMP_OP (mx_el_gt, >, M1, C1, M2, C2) \ SPARSE_SMM_CMP_OP (mx_el_eq, ==, M1, , M2, ) \ SPARSE_SMM_CMP_OP (mx_el_ne, !=, M1, , M2, ) #define SPARSE_SMM_EQNE_OPS(M1, Z1, C1, M2, Z2, C2) \ SPARSE_SMM_CMP_OP (mx_el_eq, ==, M1, , M2, ) \ SPARSE_SMM_CMP_OP (mx_el_ne, !=, M1, , M2, ) #define SPARSE_SMM_BOOL_OP_DECLS(M1, M2) \ SPARSE_BOOL_OP_DECL (mx_el_and, M1, M2); \ SPARSE_BOOL_OP_DECL (mx_el_or, M1, M2); #define SPARSE_SMM_BOOL_OP(F, OP, M1, M2, LHS_ZERO, RHS_ZERO) \ SparseBoolMatrix \ F (const M1& m1, const M2& m2) \ { \ SparseBoolMatrix r; \ \ octave_idx_type m1_nr = m1.rows (); \ octave_idx_type m1_nc = m1.cols (); \ \ octave_idx_type m2_nr = m2.rows (); \ octave_idx_type m2_nc = m2.cols (); \ \ if (m1_nr == m2_nr && m1_nc == m2_nc) \ { \ if (m1_nr != 0 || m1_nc != 0) \ { \ /* Count num of non-zero elements */ \ octave_idx_type nel = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ for (octave_idx_type i = 0; i < m1_nr; i++) \ if ((m1.elem(i, j) != LHS_ZERO) \ OP (m2.elem(i, j) != RHS_ZERO)) \ nel++; \ \ r = SparseBoolMatrix (m1_nr, m1_nc, nel); \ \ octave_idx_type ii = 0; \ r.cidx (0) = 0; \ for (octave_idx_type j = 0; j < m1_nc; j++) \ { \ for (octave_idx_type i = 0; i < m1_nr; i++) \ { \ bool el = (m1.elem(i, j) != LHS_ZERO) \ OP (m2.elem(i, j) != RHS_ZERO); \ if (el) \ { \ r.data(ii) = el; \ r.ridx(ii++) = i; \ } \ } \ r.cidx(j+1) = ii; \ } \ } \ } \ else \ { \ if ((m1_nr != 0 || m1_nc != 0) && (m2_nr != 0 || m2_nc != 0)) \ gripe_nonconformant (#F, m1_nr, m1_nc, m2_nr, m2_nc); \ } \ return r; \ } #define SPARSE_SMM_BOOL_OPS2(M1, M2, LHS_ZERO, RHS_ZERO) \ SPARSE_SMM_BOOL_OP (mx_el_and, &&, M1, M2, LHS_ZERO, RHS_ZERO) \ SPARSE_SMM_BOOL_OP (mx_el_or, ||, M1, M2, LHS_ZERO, RHS_ZERO) \ #define SPARSE_SMM_BOOL_OPS(M1, M2, ZERO) \ SPARSE_SMM_BOOL_OPS2(M1, M2, ZERO, ZERO) #define SPARSE_SMM_OP_DECLS(R1, R2, M1, M2) \ SPARSE_SMM_BIN_OP_DECLS (R1, R2, M1, M2) \ SPARSE_SMM_CMP_OP_DECLS (M1, M2) \ SPARSE_SMM_BOOL_OP_DECLS (M1, M2) // Avoid some code duplication. Maybe we should use templates. #define SPARSE_CUMSUM(RET_TYPE, ELT_TYPE, FCN) \ \ octave_idx_type nr = rows (); \ octave_idx_type nc = cols (); \ \ RET_TYPE retval; \ \ if (nr > 0 && nc > 0) \ { \ if ((nr == 1 && dim == -1) || dim == 1) \ /* Ugly!! Is there a better way? */ \ retval = transpose (). FCN (0) .transpose (); \ else \ { \ octave_idx_type nel = 0; \ for (octave_idx_type i = 0; i < nc; i++) \ { \ ELT_TYPE t = ELT_TYPE (); \ for (octave_idx_type j = cidx (i); j < cidx (i+1); j++) \ { \ t += data(j); \ if (t != ELT_TYPE ()) \ if (j == cidx(i+1) - 1) \ nel += nr - ridx(j); \ else \ nel += ridx(j+1) - ridx(j); \ } \ } \ retval = RET_TYPE (nr, nc, nel); \ retval.cidx(0) = 0; \ octave_idx_type ii = 0; \ for (octave_idx_type i = 0; i < nc; i++) \ { \ ELT_TYPE t = ELT_TYPE (); \ for (octave_idx_type j = cidx (i); j < cidx (i+1); j++) \ { \ t += data(j); \ if (t != ELT_TYPE ()) \ { \ if (j == cidx(i+1) - 1) \ { \ for (octave_idx_type k = ridx(j); k < nr; k++) \ { \ retval.data (ii) = t; \ retval.ridx (ii++) = k; \ } \ } \ else \ { \ for (octave_idx_type k = ridx(j); k < ridx(j+1); k++) \ { \ retval.data (ii) = t; \ retval.ridx (ii++) = k; \ } \ } \ } \ } \ retval.cidx(i+1) = ii; \ } \ } \ } \ else \ retval = RET_TYPE (nr,nc); \ \ return retval #define SPARSE_CUMPROD(RET_TYPE, ELT_TYPE, FCN) \ \ octave_idx_type nr = rows (); \ octave_idx_type nc = cols (); \ \ RET_TYPE retval; \ \ if (nr > 0 && nc > 0) \ { \ if ((nr == 1 && dim == -1) || dim == 1) \ /* Ugly!! Is there a better way? */ \ retval = transpose (). FCN (0) .transpose (); \ else \ { \ octave_idx_type nel = 0; \ for (octave_idx_type i = 0; i < nc; i++) \ { \ octave_idx_type jj = 0; \ for (octave_idx_type j = cidx (i); j < cidx (i+1); j++) \ { \ if (jj == ridx(j)) \ { \ nel++; \ jj++; \ } \ else \ break; \ } \ } \ retval = RET_TYPE (nr, nc, nel); \ retval.cidx(0) = 0; \ octave_idx_type ii = 0; \ for (octave_idx_type i = 0; i < nc; i++) \ { \ ELT_TYPE t = ELT_TYPE (1.); \ octave_idx_type jj = 0; \ for (octave_idx_type j = cidx (i); j < cidx (i+1); j++) \ { \ if (jj == ridx(j)) \ { \ t *= data(j); \ retval.data(ii) = t; \ retval.ridx(ii++) = jj++; \ } \ else \ break; \ } \ retval.cidx(i+1) = ii; \ } \ } \ } \ else \ retval = RET_TYPE (nr,nc); \ \ return retval #define SPARSE_BASE_REDUCTION_OP(RET_TYPE, EL_TYPE, ROW_EXPR, COL_EXPR, \ INIT_VAL, MT_RESULT) \ \ octave_idx_type nr = rows (); \ octave_idx_type nc = cols (); \ \ RET_TYPE retval; \ \ if (nr > 0 && nc > 0) \ { \ if ((nr == 1 && dim == -1) || dim == 1) \ { \ OCTAVE_LOCAL_BUFFER (EL_TYPE, tmp, nr); \ \ for (octave_idx_type i = 0; i < nr; i++) \ { \ tmp[i] = INIT_VAL; \ for (octave_idx_type j = 0; j < nc; j++) \ { \ ROW_EXPR; \ } \ } \ octave_idx_type nel = 0; \ for (octave_idx_type i = 0; i < nr; i++) \ if (tmp[i] != EL_TYPE ()) \ nel++ ; \ retval = RET_TYPE (nr, static_cast<octave_idx_type> (1), nel); \ retval.cidx(0) = 0; \ retval.cidx(1) = nel; \ nel = 0; \ for (octave_idx_type i = 0; i < nr; i++) \ if (tmp[i] != EL_TYPE ()) \ { \ retval.data(nel) = tmp[i]; \ retval.ridx(nel++) = i; \ } \ } \ else \ { \ OCTAVE_LOCAL_BUFFER (EL_TYPE, tmp, nc); \ \ for (octave_idx_type j = 0; j < nc; j++) \ { \ tmp[j] = INIT_VAL; \ for (octave_idx_type i = 0; i < nr; i++) \ { \ COL_EXPR; \ } \ } \ octave_idx_type nel = 0; \ for (octave_idx_type i = 0; i < nc; i++) \ if (tmp[i] != EL_TYPE ()) \ nel++ ; \ retval = RET_TYPE (static_cast<octave_idx_type> (1), nc, nel); \ retval.cidx(0) = 0; \ nel = 0; \ for (octave_idx_type i = 0; i < nc; i++) \ if (tmp[i] != EL_TYPE ()) \ { \ retval.data(nel) = tmp[i]; \ retval.ridx(nel++) = 0; \ retval.cidx(i+1) = retval.cidx(i) + 1; \ } \ else \ retval.cidx(i+1) = retval.cidx(i); \ } \ } \ else if (nc == 0 && (nr == 0 || (nr == 1 && dim == -1))) \ { \ retval = RET_TYPE (static_cast<octave_idx_type> (1), \ static_cast<octave_idx_type> (1), \ static_cast<octave_idx_type> (1)); \ retval.cidx(0) = 0; \ retval.cidx(1) = 1; \ retval.ridx(0) = 0; \ retval.data(0) = MT_RESULT; \ } \ else if (nr == 0 && (dim == 0 || dim == -1)) \ { \ retval = RET_TYPE (static_cast<octave_idx_type> (1), nc, nc); \ retval.cidx (0) = 0; \ for (octave_idx_type i = 0; i < nc ; i++) \ { \ retval.ridx (i) = 0; \ retval.cidx (i+1) = i; \ retval.data (i) = MT_RESULT; \ } \ } \ else if (nc == 0 && dim == 1) \ { \ retval = RET_TYPE (nr, static_cast<octave_idx_type> (1), nr); \ retval.cidx(0) = 0; \ retval.cidx(1) = nr; \ for (octave_idx_type i = 0; i < nr; i++) \ { \ retval.ridx(i) = i; \ retval.data(i) = MT_RESULT; \ } \ } \ else \ retval.resize (nr > 0, nc > 0); \ \ return retval #define SPARSE_REDUCTION_OP_ROW_EXPR(OP) \ tmp[i] OP elem (i, j) #define SPARSE_REDUCTION_OP_COL_EXPR(OP) \ tmp[j] OP elem (i, j) #define SPARSE_REDUCTION_OP(RET_TYPE, EL_TYPE, OP, INIT_VAL, MT_RESULT) \ SPARSE_BASE_REDUCTION_OP (RET_TYPE, EL_TYPE, \ SPARSE_REDUCTION_OP_ROW_EXPR (OP), \ SPARSE_REDUCTION_OP_COL_EXPR (OP), \ INIT_VAL, MT_RESULT) #define SPARSE_ANY_ALL_OP_ROW_CODE(TEST_OP, TEST_TRUE_VAL) \ if (elem (i, j) TEST_OP 0.0) \ { \ tmp[i] = TEST_TRUE_VAL; \ break; \ } #define SPARSE_ANY_ALL_OP_COL_CODE(TEST_OP, TEST_TRUE_VAL) \ if (elem (i, j) TEST_OP 0.0) \ { \ tmp[j] = TEST_TRUE_VAL; \ break; \ } #define SPARSE_ANY_ALL_OP(DIM, INIT_VAL, TEST_OP, TEST_TRUE_VAL) \ SPARSE_BASE_REDUCTION_OP (SparseBoolMatrix, char, \ SPARSE_ANY_ALL_OP_ROW_CODE (TEST_OP, TEST_TRUE_VAL), \ SPARSE_ANY_ALL_OP_COL_CODE (TEST_OP, TEST_TRUE_VAL), \ INIT_VAL, INIT_VAL) #define SPARSE_ALL_OP(DIM) SPARSE_ANY_ALL_OP (DIM, true, ==, false) #define SPARSE_ANY_OP(DIM) SPARSE_ANY_ALL_OP (DIM, false, !=, true) #define SPARSE_SPARSE_MUL( RET_TYPE, RET_EL_TYPE, EL_TYPE ) \ octave_idx_type nr = m.rows (); \ octave_idx_type nc = m.cols (); \ \ octave_idx_type a_nr = a.rows (); \ octave_idx_type a_nc = a.cols (); \ \ if (nc != a_nr) \ { \ gripe_nonconformant ("operator *", nr, nc, a_nr, a_nc); \ return RET_TYPE (); \ } \ else \ { \ OCTAVE_LOCAL_BUFFER (octave_idx_type, w, nr); \ RET_TYPE retval (nr, a_nc, 0); \ for (octave_idx_type i = 0; i < nr; i++) \ w[i] = 0; \ retval.xcidx(0) = 0; \ \ octave_idx_type nel = 0; \ \ for (octave_idx_type i = 0; i < a_nc; i++) \ { \ for (octave_idx_type j = a.cidx(i); j < a.cidx(i+1); j++) \ { \ octave_idx_type col = a.ridx(j); \ for (octave_idx_type k = m.cidx(col) ; k < m.cidx(col+1); k++) \ { \ if (w[m.ridx(k)] < i + 1) \ { \ w[m.ridx(k)] = i + 1; \ nel++; \ } \ OCTAVE_QUIT; \ } \ } \ retval.xcidx(i+1) = nel; \ } \ \ if (nel == 0) \ return RET_TYPE (nr, a_nc); \ else \ { \ for (octave_idx_type i = 0; i < nr; i++) \ w[i] = 0; \ \ OCTAVE_LOCAL_BUFFER (RET_EL_TYPE, Xcol, nr); \ \ retval.change_capacity (nel); \ /* The optimal break-point as estimated from simulations */ \ /* Note that Mergesort is O(nz log(nz)) while searching all */ \ /* values is O(nr), where nz here is non-zero per row of */ \ /* length nr. The test itself was then derived from the */ \ /* simulation with random square matrices and the observation */ \ /* of the number of non-zero elements in the output matrix */ \ /* it was found that the breakpoints were */ \ /* nr: 500 1000 2000 5000 10000 */ \ /* nz: 6 25 97 585 2202 */ \ /* The below is a simplication of the 'polyfit'-ed parameters */ \ /* to these breakpoints */ \ octave_idx_type n_per_col = (a_nc > 43000 ? 43000 : \ (a_nc * a_nc) / 43000); \ octave_idx_type ii = 0; \ octave_idx_type *ri = retval.xridx(); \ octave_sort<octave_idx_type> sort; \ \ for (octave_idx_type i = 0; i < a_nc ; i++) \ { \ if (retval.xcidx(i+1) - retval.xcidx(i) > n_per_col) \ { \ for (octave_idx_type j = a.cidx(i); j < a.cidx(i+1); j++) \ { \ octave_idx_type col = a.ridx(j); \ EL_TYPE tmpval = a.data(j); \ for (octave_idx_type k = m.cidx(col) ; \ k < m.cidx(col+1); k++) \ { \ OCTAVE_QUIT; \ octave_idx_type row = m.ridx(k); \ if (w[row] < i + 1) \ { \ w[row] = i + 1; \ Xcol[row] = tmpval * m.data(k); \ } \ else \ Xcol[row] += tmpval * m.data(k); \ } \ } \ for (octave_idx_type k = 0; k < nr; k++) \ if (w[k] == i + 1) \ { \ retval.xdata(ii) = Xcol[k]; \ retval.xridx(ii++) = k; \ } \ } \ else \ { \ for (octave_idx_type j = a.cidx(i); j < a.cidx(i+1); j++) \ { \ octave_idx_type col = a.ridx(j); \ EL_TYPE tmpval = a.data(j); \ for (octave_idx_type k = m.cidx(col) ; \ k < m.cidx(col+1); k++) \ { \ OCTAVE_QUIT; \ octave_idx_type row = m.ridx(k); \ if (w[row] < i + 1) \ { \ w[row] = i + 1; \ retval.xridx(ii++) = row;\ Xcol[row] = tmpval * m.data(k); \ } \ else \ Xcol[row] += tmpval * m.data(k); \ } \ } \ sort.sort (ri + retval.xcidx(i), ii - retval.xcidx(i)); \ for (octave_idx_type k = retval.xcidx(i); k < ii; k++) \ retval.xdata(k) = Xcol[retval.xridx(k)]; \ } \ } \ retval.maybe_compress (true);\ return retval; \ } \ } #define SPARSE_FULL_MUL( RET_TYPE, EL_TYPE, ZERO ) \ octave_idx_type nr = m.rows (); \ octave_idx_type nc = m.cols (); \ \ octave_idx_type a_nr = a.rows (); \ octave_idx_type a_nc = a.cols (); \ \ if (nc != a_nr) \ { \ gripe_nonconformant ("operator *", nr, nc, a_nr, a_nc); \ return RET_TYPE (); \ } \ else \ { \ RET_TYPE retval (nr, a_nc, ZERO); \ \ for (octave_idx_type i = 0; i < a_nc ; i++) \ { \ for (octave_idx_type j = 0; j < a_nr; j++) \ { \ OCTAVE_QUIT; \ \ EL_TYPE tmpval = a.elem(j,i); \ for (octave_idx_type k = m.cidx(j) ; k < m.cidx(j+1); k++) \ retval.elem (m.ridx(k),i) += tmpval * m.data(k); \ } \ } \ return retval; \ } #define FULL_SPARSE_MUL( RET_TYPE, EL_TYPE, ZERO ) \ octave_idx_type nr = m.rows (); \ octave_idx_type nc = m.cols (); \ \ octave_idx_type a_nr = a.rows (); \ octave_idx_type a_nc = a.cols (); \ \ if (nc != a_nr) \ { \ gripe_nonconformant ("operator *", nr, nc, a_nr, a_nc); \ return RET_TYPE (); \ } \ else \ { \ RET_TYPE retval (nr, a_nc, ZERO); \ \ for (octave_idx_type i = 0; i < a_nc ; i++) \ { \ for (octave_idx_type j = a.cidx(i); j < a.cidx(i+1); j++) \ { \ octave_idx_type col = a.ridx(j); \ EL_TYPE tmpval = a.data(j); \ OCTAVE_QUIT; \ \ for (octave_idx_type k = 0 ; k < nr; k++) \ retval.elem (k,i) += tmpval * m.elem(k,col); \ } \ } \ return retval; \ } #endif /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */