Mercurial > hg > octave-nkf
view src/ov-flt-cx-diag.cc @ 10843:229675bb7647 ss-3-3-52
version is now 3.3.52
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sun, 01 Aug 2010 11:49:45 -0400 |
parents | 0eb323b71957 |
children | fd0a3ac60b0e |
line wrap: on
line source
/* Copyright (C) 2008, 2009 Jaroslav Hajek This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "byte-swap.h" #include "ov-flt-cx-diag.h" #include "ov-base-diag.cc" #include "ov-flt-re-diag.h" #include "ov-flt-complex.h" #include "ov-flt-cx-mat.h" #include "ls-utils.h" template class octave_base_diag<FloatComplexDiagMatrix, FloatComplexMatrix>; DEFINE_OCTAVE_ALLOCATOR (octave_float_complex_diag_matrix); DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_float_complex_diag_matrix, "float complex diagonal matrix", "single"); static octave_base_value * default_numeric_conversion_function (const octave_base_value& a) { CAST_CONV_ARG (const octave_float_complex_diag_matrix&); return new octave_float_complex_matrix (v.float_complex_matrix_value ()); } octave_base_value::type_conv_info octave_float_complex_diag_matrix::numeric_conversion_function (void) const { return octave_base_value::type_conv_info (default_numeric_conversion_function, octave_float_complex_matrix::static_type_id ()); } octave_base_value * octave_float_complex_diag_matrix::try_narrowing_conversion (void) { octave_base_value *retval = 0; if (matrix.nelem () == 1) { retval = new octave_float_complex (matrix (0, 0)); octave_base_value *rv2 = retval->try_narrowing_conversion (); if (rv2) { delete retval; retval = rv2; } } else if (matrix.all_elements_are_real ()) { return new octave_float_diag_matrix (::real (matrix)); } return retval; } DiagMatrix octave_float_complex_diag_matrix::diag_matrix_value (bool force_conversion) const { DiagMatrix retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", type_name (), "real matrix"); retval = ::real (matrix); return retval; } FloatDiagMatrix octave_float_complex_diag_matrix::float_diag_matrix_value (bool force_conversion) const { DiagMatrix retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", type_name (), "real matrix"); retval = ::real (matrix); return retval; } ComplexDiagMatrix octave_float_complex_diag_matrix::complex_diag_matrix_value (bool) const { return ComplexDiagMatrix (matrix); } FloatComplexDiagMatrix octave_float_complex_diag_matrix::float_complex_diag_matrix_value (bool) const { return matrix; } octave_value octave_float_complex_diag_matrix::map (unary_mapper_t umap) const { switch (umap) { case umap_abs: return matrix.abs (); case umap_real: return ::real (matrix); case umap_conj: return ::conj (matrix); case umap_imag: return ::imag (matrix); case umap_sqrt: { FloatComplexColumnVector tmp = matrix.diag ().map<FloatComplex> (std::sqrt); FloatComplexDiagMatrix retval (tmp); retval.resize (matrix.rows (), matrix.columns ()); return retval; } default: return to_dense ().map (umap); } } bool octave_float_complex_diag_matrix::save_binary (std::ostream& os, bool& /* save_as_floats */) { int32_t r = matrix.rows (), c = matrix.cols (); os.write (reinterpret_cast<char *> (&r), 4); os.write (reinterpret_cast<char *> (&c), 4); FloatComplexMatrix m = FloatComplexMatrix (matrix.diag ()); save_type st = LS_FLOAT; if (matrix.length () > 4096) // FIXME -- make this configurable. { float max_val, min_val; if (m.all_integers (max_val, min_val)) st = get_save_type (max_val, min_val); } const FloatComplex *mtmp = m.data (); write_floats (os, reinterpret_cast<const float *> (mtmp), st, 2 * m.numel ()); return true; } bool octave_float_complex_diag_matrix::load_binary (std::istream& is, bool swap, oct_mach_info::float_format fmt) { int32_t r, c; char tmp; if (! (is.read (reinterpret_cast<char *> (&r), 4) && is.read (reinterpret_cast<char *> (&c), 4) && is.read (reinterpret_cast<char *> (&tmp), 1))) return false; if (swap) { swap_bytes<4> (&r); swap_bytes<4> (&c); } FloatComplexDiagMatrix m (r, c); FloatComplex *re = m.fortran_vec (); octave_idx_type len = m.length (); read_floats (is, reinterpret_cast<float *> (re), static_cast<save_type> (tmp), 2 * len, swap, fmt); if (error_state || ! is) return false; matrix = m; return true; } bool octave_float_complex_diag_matrix::chk_valid_scalar (const octave_value& val, FloatComplex& x) const { bool retval = val.is_complex_scalar () || val.is_real_scalar (); if (retval) x = val.float_complex_value (); return retval; }