Mercurial > hg > octave-nkf
view src/pt-mat.cc @ 10843:229675bb7647 ss-3-3-52
version is now 3.3.52
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sun, 01 Aug 2010 11:49:45 -0400 |
parents | 89f4d7e294cc |
children | f42e8c6196c3 |
line wrap: on
line source
/* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include "quit.h" #include "defun.h" #include "error.h" #include "oct-obj.h" #include "pt-arg-list.h" #include "pt-bp.h" #include "pt-exp.h" #include "pt-mat.h" #include "pt-walk.h" #include "utils.h" #include "ov.h" #include "variables.h" #include "ov-cx-mat.h" #include "ov-flt-cx-mat.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" // The character to fill with when creating string arrays. char Vstring_fill_char = ' '; // General matrices. This list type is much more work to handle than // constant matrices, but it allows us to construct matrices from // other matrices, variables, and functions. // But first, some internal classes that make our job much easier. class tm_row_const { private: class tm_row_const_rep : public octave_base_list<octave_value> { public: tm_row_const_rep (void) : count (1), dv (0, 0), all_str (false), all_sq_str (false), all_dq_str (false), some_str (false), all_real (false), all_cmplx (false), all_mt (true), any_sparse (false), any_class (false), all_1x1 (false), class_nm (), ok (false) { } tm_row_const_rep (const tree_argument_list& row) : count (1), dv (0, 0), all_str (false), all_sq_str (false), some_str (false), all_real (false), all_cmplx (false), all_mt (true), any_sparse (false), any_class (false), all_1x1 (! row.empty ()), class_nm (), ok (false) { init (row); } ~tm_row_const_rep (void) { } int count; dim_vector dv; bool all_str; bool all_sq_str; bool all_dq_str; bool some_str; bool all_real; bool all_cmplx; bool all_mt; bool any_sparse; bool any_class; bool all_1x1; std::string class_nm; bool ok; bool do_init_element (tree_expression *, const octave_value&, bool&); void init (const tree_argument_list&); private: tm_row_const_rep (const tm_row_const_rep&); tm_row_const_rep& operator = (const tm_row_const_rep&); void eval_warning (const char *msg, int l, int c) const; }; public: typedef tm_row_const_rep::iterator iterator; typedef tm_row_const_rep::const_iterator const_iterator; tm_row_const (void) : rep (0) { } tm_row_const (const tree_argument_list& row) : rep (new tm_row_const_rep (row)) { } tm_row_const (const tm_row_const& x) : rep (x.rep) { if (rep) rep->count++; } tm_row_const& operator = (const tm_row_const& x) { if (this != &x && rep != x.rep) { if (rep && --rep->count == 0) delete rep; rep = x.rep; if (rep) rep->count++; } return *this; } ~tm_row_const (void) { if (rep && --rep->count == 0) delete rep; } octave_idx_type rows (void) { return rep->dv(0); } octave_idx_type cols (void) { return rep->dv(1); } bool empty (void) const { return rep->empty (); } size_t length (void) const { return rep->length (); } dim_vector dims (void) { return rep->dv; } bool all_strings_p (void) const { return rep->all_str; } bool all_sq_strings_p (void) const { return rep->all_sq_str; } bool all_dq_strings_p (void) const { return rep->all_dq_str; } bool some_strings_p (void) const { return rep->some_str; } bool all_real_p (void) const { return rep->all_real; } bool all_complex_p (void) const { return rep->all_cmplx; } bool all_empty_p (void) const { return rep->all_mt; } bool any_sparse_p (void) const { return rep->any_sparse; } bool any_class_p (void) const { return rep->any_class; } bool all_1x1_p (void) const { return rep->all_1x1; } std::string class_name (void) const { return rep->class_nm; } operator bool () const { return (rep && rep->ok); } iterator begin (void) { return rep->begin (); } const_iterator begin (void) const { return rep->begin (); } iterator end (void) { return rep->end (); } const_iterator end (void) const { return rep->end (); } private: tm_row_const_rep *rep; }; std::string get_concat_class (const std::string& c1, const std::string& c2) { std::string retval = octave_base_value::static_class_name (); if (c1 == c2) retval = c1; else if (c1.empty ()) retval = c2; else if (c2.empty ()) retval = c1; else { bool c1_is_int = (c1 == "int8" || c1 == "uint8" || c1 == "int16" || c1 == "uint16" || c1 == "int32" || c1 == "uint32" || c1 == "int64" || c1 == "uint64"); bool c2_is_int = (c2 == "int8" || c2 == "uint8" || c2 == "int16" || c2 == "uint16" || c2 == "int32" || c2 == "uint32" || c2 == "int64" || c2 == "uint64"); bool c1_is_char = (c1 == "char"); bool c2_is_char = (c2 == "char"); bool c1_is_double = (c1 == "double"); bool c2_is_double = (c2 == "double"); bool c1_is_single = (c1 == "single"); bool c2_is_single = (c2 == "single"); bool c1_is_logical = (c1 == "logical"); bool c2_is_logical = (c2 == "logical"); bool c1_is_built_in_type = (c1_is_int || c1_is_char || c1_is_double || c1_is_single || c1_is_logical); bool c2_is_built_in_type = (c2_is_int || c2_is_char || c2_is_double || c2_is_single || c2_is_logical); // Order is important here... if (c1_is_char && c2_is_built_in_type) retval = c1; else if (c2_is_char && c1_is_built_in_type) retval = c2; else if (c1_is_int && c2_is_built_in_type) retval = c1; else if (c2_is_int && c1_is_built_in_type) retval = c2; else if (c1_is_single && c2_is_built_in_type) retval = c1; else if (c2_is_single && c1_is_built_in_type) retval = c2; else if (c1_is_double && c2_is_built_in_type) retval = c1; else if (c2_is_double && c1_is_built_in_type) retval = c2; else if (c1_is_logical && c2_is_logical) retval = c1; else if (c1 == "struct" && c2 == c1) retval = c1; else if (c1 == "cell" && c2 == c1) retval = c1; } return retval; } static void eval_error (const char *msg, int l, int c, const dim_vector& x, const dim_vector& y) { if (l == -1 && c == -1) { ::error ("%s (%s vs %s)", msg, x.str ().c_str (), y.str ().c_str ()); } else { ::error ("%s (%s vs %s) near line %d, column %d", msg, x.str ().c_str (), y.str ().c_str (), l, c); } } bool tm_row_const::tm_row_const_rep::do_init_element (tree_expression *elt, const octave_value& val, bool& first_elem) { std::string this_elt_class_nm = val.class_name (); dim_vector this_elt_dv = val.dims (); class_nm = get_concat_class (class_nm, this_elt_class_nm); if (! this_elt_dv.zero_by_zero ()) { all_mt = false; if (first_elem) { first_elem = false; dv = this_elt_dv; } else if (! dv.hvcat (this_elt_dv, 1)) { eval_error ("horizontal dimensions mismatch", elt->line (), elt->column (), dv, this_elt_dv); return false; } } append (val); if (all_str && ! val.is_string ()) all_str = false; if (all_sq_str && ! val.is_sq_string ()) all_sq_str = false; if (all_dq_str && ! val.is_dq_string ()) all_dq_str = false; if (! some_str && val.is_string ()) some_str = true; if (all_real && ! val.is_real_type ()) all_real = false; if (all_cmplx && ! (val.is_complex_type () || val.is_real_type ())) all_cmplx = false; if (!any_sparse && val.is_sparse_type ()) any_sparse = true; if (!any_class && val.is_object ()) any_class = true; all_1x1 = all_1x1 && val.numel () == 1; return true; } void tm_row_const::tm_row_const_rep::init (const tree_argument_list& row) { all_str = true; all_sq_str = true; all_dq_str = true; all_real = true; all_cmplx = true; any_sparse = false; any_class = false; bool first_elem = true; for (tree_argument_list::const_iterator p = row.begin (); p != row.end (); p++) { octave_quit (); tree_expression *elt = *p; octave_value tmp = elt->rvalue1 (); if (error_state || tmp.is_undefined ()) break; else { if (tmp.is_cs_list ()) { octave_value_list tlst = tmp.list_value (); for (octave_idx_type i = 0; i < tlst.length (); i++) { octave_quit (); if (! do_init_element (elt, tlst(i), first_elem)) goto done; } } else { if (! do_init_element (elt, tmp, first_elem)) goto done; } } } done: ok = ! error_state; } void tm_row_const::tm_row_const_rep::eval_warning (const char *msg, int l, int c) const { if (l == -1 && c == -1) warning_with_id ("Octave:empty-list-elements", "%s", msg); else warning_with_id ("Octave:empty-list-elements", "%s near line %d, column %d", msg, l, c); } class tm_const : public octave_base_list<tm_row_const> { public: tm_const (const tree_matrix& tm) : dv (0, 0), all_str (false), all_sq_str (false), all_dq_str (false), some_str (false), all_real (false), all_cmplx (false), all_mt (true), any_sparse (false), any_class (false), class_nm (), ok (false) { init (tm); } ~tm_const (void) { } octave_idx_type rows (void) const { return dv.elem (0); } octave_idx_type cols (void) const { return dv.elem (1); } dim_vector dims (void) const { return dv; } bool all_strings_p (void) const { return all_str; } bool all_sq_strings_p (void) const { return all_sq_str; } bool all_dq_strings_p (void) const { return all_dq_str; } bool some_strings_p (void) const { return some_str; } bool all_real_p (void) const { return all_real; } bool all_complex_p (void) const { return all_cmplx; } bool all_empty_p (void) const { return all_mt; } bool any_sparse_p (void) const { return any_sparse; } bool any_class_p (void) const { return any_class; } bool all_1x1_p (void) const { return all_1x1; } std::string class_name (void) const { return class_nm; } operator bool () const { return ok; } private: dim_vector dv; bool all_str; bool all_sq_str; bool all_dq_str; bool some_str; bool all_real; bool all_cmplx; bool all_mt; bool any_sparse; bool any_class; bool all_1x1; std::string class_nm; bool ok; tm_const (void); tm_const (const tm_const&); tm_const& operator = (const tm_const&); void init (const tree_matrix& tm); }; void tm_const::init (const tree_matrix& tm) { all_str = true; all_sq_str = true; all_dq_str = true; all_real = true; all_cmplx = true; any_sparse = false; any_class = false; all_1x1 = ! empty (); bool first_elem = true; // Just eval and figure out if what we have is complex or all // strings. We can't check columns until we know that this is a // numeric matrix -- collections of strings can have elements of // different lengths. for (tree_matrix::const_iterator p = tm.begin (); p != tm.end (); p++) { octave_quit (); tree_argument_list *elt = *p; tm_row_const tmp (*elt); if (tmp && ! tmp.empty ()) { if (all_str && ! tmp.all_strings_p ()) all_str = false; if (all_sq_str && ! tmp.all_sq_strings_p ()) all_sq_str = false; if (all_dq_str && ! tmp.all_dq_strings_p ()) all_dq_str = false; if (! some_str && tmp.some_strings_p ()) some_str = true; if (all_real && ! tmp.all_real_p ()) all_real = false; if (all_cmplx && ! tmp.all_complex_p ()) all_cmplx = false; if (all_mt && ! tmp.all_empty_p ()) all_mt = false; if (!any_sparse && tmp.any_sparse_p ()) any_sparse = true; if (!any_class && tmp.any_class_p ()) any_class = true; all_1x1 = all_1x1 && tmp.all_1x1_p (); append (tmp); } else break; } if (! error_state) { for (iterator p = begin (); p != end (); p++) { octave_quit (); tm_row_const elt = *p; octave_idx_type this_elt_nr = elt.rows (); octave_idx_type this_elt_nc = elt.cols (); std::string this_elt_class_nm = elt.class_name (); class_nm = get_concat_class (class_nm, this_elt_class_nm); dim_vector this_elt_dv = elt.dims (); all_mt = false; if (first_elem) { first_elem = false; dv = this_elt_dv; } else if (all_str && dv.length () == 2 && this_elt_dv.length () == 2) { // FIXME: this is Octave's specialty. Character matrices allow // rows of unequal length. if (this_elt_nc > cols ()) dv(1) = this_elt_nc; dv(0) += this_elt_nr; } else if (! dv.hvcat (this_elt_dv, 0)) { eval_error ("vertical dimensions mismatch", -1, -1, dv, this_elt_dv); return; } } } ok = ! error_state; } tree_matrix::~tree_matrix (void) { while (! empty ()) { iterator p = begin (); delete *p; erase (p); } } bool tree_matrix::has_magic_end (void) const { for (const_iterator p = begin (); p != end (); p++) { octave_quit (); tree_argument_list *elt = *p; if (elt && elt->has_magic_end ()) return true; } return false; } bool tree_matrix::all_elements_are_constant (void) const { for (const_iterator p = begin (); p != end (); p++) { octave_quit (); tree_argument_list *elt = *p; if (! elt->all_elements_are_constant ()) return false; } return true; } octave_value_list tree_matrix::rvalue (int nargout) { octave_value_list retval; if (nargout > 1) error ("invalid number of output arguments for matrix list"); else retval = rvalue1 (nargout); return retval; } void maybe_warn_string_concat (bool all_dq_strings_p, bool all_sq_strings_p) { if (! (all_dq_strings_p || all_sq_strings_p)) warning_with_id ("Octave:string-concat", "concatenation of different character string types may have unintended consequences"); } template<class TYPE, class T> static void single_type_concat (Array<T>& result, tm_const& tmp) { octave_idx_type r = 0, c = 0; for (tm_const::iterator p = tmp.begin (); p != tmp.end (); p++) { tm_row_const row = *p; // Skip empty arrays to allow looser rules. if (row.dims ().any_zero ()) continue; for (tm_row_const::iterator q = row.begin (); q != row.end (); q++) { octave_quit (); TYPE ra = octave_value_extract<TYPE> (*q); // Skip empty arrays to allow looser rules. if (! error_state) { if (! ra.is_empty ()) { result.insert (ra, r, c); if (! error_state) c += ra.columns (); else return; } } else return; } r += row.rows (); c = 0; } } template<class TYPE, class T> static void single_type_concat (Array<T>& result, const dim_vector& dv, tm_const& tmp) { if (dv.any_zero ()) { result = Array<T> (dv); return; } if (tmp.length () == 1) { // If possible, forward the operation to liboctave. // Single row. // FIXME: optimize all scalars case. tm_row_const& row = tmp.front (); octave_idx_type ncols = row.length (), i = 0; OCTAVE_LOCAL_BUFFER (Array<T>, array_list, ncols); for (tm_row_const::iterator q = row.begin (); q != row.end () && ! error_state; q++) { octave_quit (); // Use 0x0 in place of all empty arrays to allow looser rules. if (! q->is_empty ()) array_list[i] = octave_value_extract<TYPE> (*q); i++; } if (! error_state) result = Array<T>::cat (1, ncols, array_list); } else { result = Array<T> (dv); single_type_concat<TYPE> (result, tmp); } } template<class TYPE, class T> static void single_type_concat (Sparse<T>& result, const dim_vector& dv, tm_const& tmp) { if (dv.any_zero ()) { result = Sparse<T> (dv); return; } // Sparse matrices require preallocation for efficient indexing; besides, // only horizontal concatenation can be efficiently handled by indexing. // So we just cat all rows through liboctave, then cat the final column. octave_idx_type nrows = tmp.length (), j = 0; OCTAVE_LOCAL_BUFFER (Sparse<T>, sparse_row_list, nrows); for (tm_const::iterator p = tmp.begin (); p != tmp.end (); p++) { tm_row_const row = *p; octave_idx_type ncols = row.length (), i = 0; OCTAVE_LOCAL_BUFFER (Sparse<T>, sparse_list, ncols); for (tm_row_const::iterator q = row.begin (); q != row.end () && ! error_state; q++) { octave_quit (); // Use 0x0 in place of all empty arrays to allow looser rules. if (! q->is_empty ()) sparse_list[i] = octave_value_extract<TYPE> (*q); i++; } Sparse<T> stmp = Sparse<T>::cat (1, ncols, sparse_list); // Use 0x0 in place of all empty arrays to allow looser rules. if (! stmp.is_empty ()) sparse_row_list[j] = stmp; j++; } result = Sparse<T>::cat (0, nrows, sparse_row_list); } template<class MAP> static void single_type_concat (octave_map& result, const dim_vector& dv, tm_const& tmp) { if (dv.any_zero ()) { result = octave_map (dv); return; } octave_idx_type nrows = tmp.length (), j = 0; OCTAVE_LOCAL_BUFFER (octave_map, map_row_list, nrows); for (tm_const::iterator p = tmp.begin (); p != tmp.end (); p++) { tm_row_const row = *p; octave_idx_type ncols = row.length (), i = 0; OCTAVE_LOCAL_BUFFER (MAP, map_list, ncols); for (tm_row_const::iterator q = row.begin (); q != row.end () && ! error_state; q++) { octave_quit (); // Use 0x0 in place of all empty arrays to allow looser rules. // If MAP is octave_scalar_map, the condition is vacuously true. if (! q->is_empty ()) map_list[i] = octave_value_extract<MAP> (*q); i++; } octave_map mtmp = octave_map::cat (1, ncols, map_list); // Use 0x0 in place of all empty arrays to allow looser rules. if (! mtmp.is_empty ()) map_row_list[j] = mtmp; j++; } result = octave_map::cat (0, nrows, map_row_list); } template<class TYPE> static octave_value do_single_type_concat (const dim_vector& dv, tm_const& tmp) { TYPE result; single_type_concat<TYPE> (result, dv, tmp); return result; } template<> octave_value do_single_type_concat<octave_map> (const dim_vector& dv, tm_const& tmp) { octave_map result; if (tmp.all_1x1_p ()) single_type_concat<octave_scalar_map> (result, dv, tmp); else single_type_concat<octave_map> (result, dv, tmp); return result; } octave_value tree_matrix::rvalue1 (int) { octave_value retval = Matrix (); bool all_strings_p = false; bool all_sq_strings_p = false; bool all_dq_strings_p = false; bool all_empty_p = false; bool all_real_p = false; bool all_complex_p = false; bool any_sparse_p = false; bool any_class_p = false; bool frc_str_conv = false; tm_const tmp (*this); if (tmp && ! tmp.empty ()) { dim_vector dv = tmp.dims (); all_strings_p = tmp.all_strings_p (); all_sq_strings_p = tmp.all_sq_strings_p (); all_dq_strings_p = tmp.all_dq_strings_p (); all_empty_p = tmp.all_empty_p (); all_real_p = tmp.all_real_p (); all_complex_p = tmp.all_complex_p (); any_sparse_p = tmp.any_sparse_p (); any_class_p = tmp.any_class_p (); frc_str_conv = tmp.some_strings_p (); // Try to speed up the common cases. std::string result_type = tmp.class_name (); if (any_class_p) { octave_value_list tmp3 (tmp.length (), octave_value ()); int j = 0; for (tm_const::iterator p = tmp.begin (); p != tmp.end (); p++) { octave_quit (); tm_row_const row = *p; if (row.length () == 1) tmp3 (j++) = *(row.begin ()); else { octave_value_list tmp1 (row.length (), octave_value ()); int i = 0; for (tm_row_const::iterator q = row.begin (); q != row.end (); q++) tmp1 (i++) = *q; octave_value_list tmp2; octave_value fcn = symbol_table::find_function ("horzcat", tmp1); if (fcn.is_defined ()) { tmp2 = fcn.do_multi_index_op (1, tmp1); if (error_state) goto done; tmp3 (j++) = tmp2 (0); } else { ::error ("cat not find overloaded horzcat function"); goto done; } } } if (tmp.length () == 1) retval = tmp3 (0); else { octave_value_list tmp2; octave_value fcn = symbol_table::find_function ("vertcat", tmp3); if (fcn.is_defined ()) { tmp2 = fcn.do_multi_index_op (1, tmp3); if (! error_state) retval = tmp2 (0); } else ::error ("cat not find overloaded vertcat function"); } } else if (result_type == "double") { if (any_sparse_p) { if (all_real_p) retval = do_single_type_concat<SparseMatrix> (dv, tmp); else retval = do_single_type_concat<SparseComplexMatrix> (dv, tmp); } else { if (all_real_p) retval = do_single_type_concat<NDArray> (dv, tmp); else retval = do_single_type_concat<ComplexNDArray> (dv, tmp); } } else if (result_type == "single") { if (all_real_p) retval = do_single_type_concat<FloatNDArray> (dv, tmp); else retval = do_single_type_concat<FloatComplexNDArray> (dv, tmp); } else if (result_type == "char") { char type = all_dq_strings_p ? '"' : '\''; maybe_warn_string_concat (all_dq_strings_p, all_sq_strings_p); charNDArray result (dv, Vstring_fill_char); single_type_concat<charNDArray> (result, tmp); retval = octave_value (result, type); } else if (result_type == "logical") { if (any_sparse_p) retval = do_single_type_concat<SparseBoolMatrix> (dv, tmp); else retval = do_single_type_concat<boolNDArray> (dv, tmp); } else if (result_type == "int8") retval = do_single_type_concat<int8NDArray> (dv, tmp); else if (result_type == "int16") retval = do_single_type_concat<int16NDArray> (dv, tmp); else if (result_type == "int32") retval = do_single_type_concat<int32NDArray> (dv, tmp); else if (result_type == "int64") retval = do_single_type_concat<int64NDArray> (dv, tmp); else if (result_type == "uint8") retval = do_single_type_concat<uint8NDArray> (dv, tmp); else if (result_type == "uint16") retval = do_single_type_concat<uint16NDArray> (dv, tmp); else if (result_type == "uint32") retval = do_single_type_concat<uint32NDArray> (dv, tmp); else if (result_type == "uint64") retval = do_single_type_concat<uint64NDArray> (dv, tmp); else if (result_type == "cell") retval = do_single_type_concat<Cell> (dv, tmp); else if (result_type == "struct") retval = do_single_type_concat<octave_map> (dv, tmp); else { // The line below might seem crazy, since we take a copy of // the first argument, resize it to be empty and then resize // it to be full. This is done since it means that there is // no recopying of data, as would happen if we used a single // resize. It should be noted that resize operation is also // significantly slower than the do_cat_op function, so it // makes sense to have an empty matrix and copy all data. // // We might also start with a empty octave_value using // // ctmp = octave_value_typeinfo::lookup_type // (tmp.begin() -> begin() -> type_name()); // // and then directly resize. However, for some types there // might be some additional setup needed, and so this should // be avoided. octave_value ctmp; // Find the first non-empty object if (any_sparse_p) { // Start with sparse matrix to avoid issues memory issues // with things like [ones(1,4),sprandn(1e8,4,1e-4)] if (all_real_p) ctmp = octave_sparse_matrix ().resize (dv); else ctmp = octave_sparse_complex_matrix ().resize (dv); } else { for (tm_const::iterator p = tmp.begin (); p != tmp.end (); p++) { octave_quit (); tm_row_const row = *p; for (tm_row_const::iterator q = row.begin (); q != row.end (); q++) { octave_quit (); ctmp = *q; if (! ctmp.all_zero_dims ()) goto found_non_empty; } } ctmp = (*(tmp.begin() -> begin())); found_non_empty: if (! all_empty_p) ctmp = ctmp.resize (dim_vector (0,0)).resize (dv); } if (! error_state) { // Now, extract the values from the individual elements and // insert them in the result matrix. int dv_len = dv.length (); Array<octave_idx_type> ra_idx (dv_len > 1 ? dv_len : 2, 1, 0); for (tm_const::iterator p = tmp.begin (); p != tmp.end (); p++) { octave_quit (); tm_row_const row = *p; for (tm_row_const::iterator q = row.begin (); q != row.end (); q++) { octave_quit (); octave_value elt = *q; if (elt.is_empty ()) continue; ctmp = do_cat_op (ctmp, elt, ra_idx); if (error_state) goto done; ra_idx (1) += elt.columns (); } ra_idx (0) += row.rows (); ra_idx (1) = 0; } retval = ctmp; if (frc_str_conv && ! retval.is_string ()) retval = retval.convert_to_str (); } } } done: return retval; } tree_expression * tree_matrix::dup (symbol_table::scope_id scope, symbol_table::context_id context) const { tree_matrix *new_matrix = new tree_matrix (0, line (), column ()); for (const_iterator p = begin (); p != end (); p++) { const tree_argument_list *elt = *p; new_matrix->append (elt ? elt->dup (scope, context) : 0); } new_matrix->copy_base (*this); return new_matrix; } void tree_matrix::accept (tree_walker& tw) { tw.visit_matrix (*this); } DEFUN (string_fill_char, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {@var{val} =} string_fill_char ()\n\ @deftypefnx {Built-in Function} {@var{old_val} =} string_fill_char (@var{new_val})\n\ Query or set the internal variable used to pad all rows of a character\n\ matrix to the same length. It must be a single character. The default\n\ value is @code{\" \"} (a single space). For example:\n\ \n\ @example\n\ @group\n\ string_fill_char (\"X\");\n\ [ \"these\"; \"are\"; \"strings\" ]\n\ @result{} \"theseXX\"\n\ \"areXXXX\"\n\ \"strings\"\n\ @end group\n\ @end example\n\ @end deftypefn") { return SET_INTERNAL_VARIABLE (string_fill_char); }