Mercurial > hg > octave-nkf
view scripts/statistics/distributions/binoinv.m @ 17874:28e9562d708b
Fix display of '{}' for empty cells in GUI Variable window.
* libinterp/octave-value/ov-cell.cc(short_disp): Use parentheses around tertiary
operator expression so that C++ stream operator '<<' doesn't grab result of
test, rather than output of test.
author | Rik <rik@octave.org> |
---|---|
date | Thu, 07 Nov 2013 09:54:38 -0800 |
parents | d63878346099 |
children | 446c46af4b42 |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2013 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} binoinv (@var{x}, @var{n}, @var{p}) ## For each element of @var{x}, compute the quantile (the inverse of ## the CDF) at @var{x} of the binomial distribution with parameters ## @var{n} and @var{p}, where @var{n} is the number of trials and ## @var{p} is the probability of success. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Quantile function of the binomial distribution function inv = binoinv (x, n, p) if (nargin != 3) print_usage (); endif if (!isscalar (n) || !isscalar (p)) [retval, x, n, p] = common_size (x, n, p); if (retval > 0) error ("binoinv: X, N, and P must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (n) || iscomplex (p)) error ("binoinv: X, N, and P must not be complex"); endif if (isa (x, "single") || isa (n, "single") || isa (p, "single")); inv = zeros (size (x), "single"); else inv = zeros (size (x)); endif k = (!(x >= 0) | !(x <= 1) | !(n >= 0) | (n != fix (n)) | !(p >= 0) | !(p <= 1)); inv(k) = NaN; k = find ((x >= 0) & (x <= 1) & (n >= 0) & (n == fix (n) & (p >= 0) & (p <= 1))); if (any (k)) if (isscalar (n) && isscalar (p)) cdf = binopdf (0, n, p) * ones (size (k)); while (any (inv(k) < n)) m = find (cdf < x(k)); if (any (m)) inv(k(m)) = inv(k(m)) + 1; cdf(m) = cdf(m) + binopdf (inv(k(m)), n, p); else break; endif endwhile else cdf = binopdf (0, n(k), p(k)); while (any (inv(k) < n(k))) m = find (cdf < x(k)); if (any (m)) inv(k(m)) = inv(k(m)) + 1; cdf(m) = cdf(m) + binopdf (inv(k(m)), n(k(m)), p(k(m))); else break; endif endwhile endif endif endfunction %!shared x %! x = [-1 0 0.5 1 2]; %!assert (binoinv (x, 2*ones (1,5), 0.5*ones (1,5)), [NaN 0 1 2 NaN]) %!assert (binoinv (x, 2, 0.5*ones (1,5)), [NaN 0 1 2 NaN]) %!assert (binoinv (x, 2*ones (1,5), 0.5), [NaN 0 1 2 NaN]) %!assert (binoinv (x, 2*[0 -1 NaN 1.1 1], 0.5), [NaN NaN NaN NaN NaN]) %!assert (binoinv (x, 2, 0.5*[0 -1 NaN 3 1]), [NaN NaN NaN NaN NaN]) %!assert (binoinv ([x(1:2) NaN x(4:5)], 2, 0.5), [NaN 0 NaN 2 NaN]) %% Test class of input preserved %!assert (binoinv ([x, NaN], 2, 0.5), [NaN 0 1 2 NaN NaN]) %!assert (binoinv (single ([x, NaN]), 2, 0.5), single ([NaN 0 1 2 NaN NaN])) %!assert (binoinv ([x, NaN], single (2), 0.5), single ([NaN 0 1 2 NaN NaN])) %!assert (binoinv ([x, NaN], 2, single (0.5)), single ([NaN 0 1 2 NaN NaN])) %% Test input validation %!error binoinv () %!error binoinv (1) %!error binoinv (1,2) %!error binoinv (1,2,3,4) %!error binoinv (ones (3), ones (2), ones (2)) %!error binoinv (ones (2), ones (3), ones (2)) %!error binoinv (ones (2), ones (2), ones (3)) %!error binoinv (i, 2, 2) %!error binoinv (2, i, 2) %!error binoinv (2, 2, i)