Mercurial > hg > octave-nkf
view scripts/statistics/distributions/cauchy_inv.m @ 17874:28e9562d708b
Fix display of '{}' for empty cells in GUI Variable window.
* libinterp/octave-value/ov-cell.cc(short_disp): Use parentheses around tertiary
operator expression so that C++ stream operator '<<' doesn't grab result of
test, rather than output of test.
author | Rik <rik@octave.org> |
---|---|
date | Thu, 07 Nov 2013 09:54:38 -0800 |
parents | d63878346099 |
children | 4197fc428c7d |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2013 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} cauchy_inv (@var{x}) ## @deftypefnx {Function File} {} cauchy_inv (@var{x}, @var{location}, @var{scale}) ## For each element of @var{x}, compute the quantile (the inverse of the ## CDF) at @var{x} of the Cauchy distribution with location parameter ## @var{location} and scale parameter @var{scale}. Default values are ## @var{location} = 0, @var{scale} = 1. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Quantile function of the Cauchy distribution function inv = cauchy_inv (x, location = 0, scale = 1) if (nargin != 1 && nargin != 3) print_usage (); endif if (!isscalar (location) || !isscalar (scale)) [retval, x, location, scale] = common_size (x, location, scale); if (retval > 0) error ("cauchy_inv: X, LOCATION, and SCALE must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (location) || iscomplex (scale)) error ("cauchy_inv: X, LOCATION, and SCALE must not be complex"); endif if (isa (x, "single") || isa (location, "single") || isa (scale, "single")) inv = NaN (size (x), "single"); else inv = NaN (size (x)); endif ok = !isinf (location) & (scale > 0) & (scale < Inf); k = (x == 0) & ok; inv(k) = -Inf; k = (x == 1) & ok; inv(k) = Inf; k = (x > 0) & (x < 1) & ok; if (isscalar (location) && isscalar (scale)) inv(k) = location - scale * cot (pi * x(k)); else inv(k) = location(k) - scale(k) .* cot (pi * x(k)); endif endfunction %!shared x %! x = [-1 0 0.5 1 2]; %!assert (cauchy_inv (x, ones (1,5), 2*ones (1,5)), [NaN -Inf 1 Inf NaN], eps) %!assert (cauchy_inv (x, 1, 2*ones (1,5)), [NaN -Inf 1 Inf NaN], eps) %!assert (cauchy_inv (x, ones (1,5), 2), [NaN -Inf 1 Inf NaN], eps) %!assert (cauchy_inv (x, [1 -Inf NaN Inf 1], 2), [NaN NaN NaN NaN NaN]) %!assert (cauchy_inv (x, 1, 2*[1 0 NaN Inf 1]), [NaN NaN NaN NaN NaN]) %!assert (cauchy_inv ([x(1:2) NaN x(4:5)], 1, 2), [NaN -Inf NaN Inf NaN]) %% Test class of input preserved %!assert (cauchy_inv ([x, NaN], 1, 2), [NaN -Inf 1 Inf NaN NaN], eps) %!assert (cauchy_inv (single ([x, NaN]), 1, 2), single ([NaN -Inf 1 Inf NaN NaN]), eps ("single")) %!assert (cauchy_inv ([x, NaN], single (1), 2), single ([NaN -Inf 1 Inf NaN NaN]), eps ("single")) %!assert (cauchy_inv ([x, NaN], 1, single (2)), single ([NaN -Inf 1 Inf NaN NaN]), eps ("single")) %% Test input validation %!error cauchy_inv () %!error cauchy_inv (1,2) %!error cauchy_inv (1,2,3,4) %!error cauchy_inv (ones (3), ones (2), ones (2)) %!error cauchy_inv (ones (2), ones (3), ones (2)) %!error cauchy_inv (ones (2), ones (2), ones (3)) %!error cauchy_inv (i, 2, 2) %!error cauchy_inv (2, i, 2) %!error cauchy_inv (2, 2, i)