Mercurial > hg > octave-nkf
view scripts/statistics/distributions/gaminv.m @ 17874:28e9562d708b
Fix display of '{}' for empty cells in GUI Variable window.
* libinterp/octave-value/ov-cell.cc(short_disp): Use parentheses around tertiary
operator expression so that C++ stream operator '<<' doesn't grab result of
test, rather than output of test.
author | Rik <rik@octave.org> |
---|---|
date | Thu, 07 Nov 2013 09:54:38 -0800 |
parents | d63878346099 |
children | 4197fc428c7d |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2013 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} gaminv (@var{x}, @var{a}, @var{b}) ## For each element of @var{x}, compute the quantile (the inverse of ## the CDF) at @var{x} of the Gamma distribution with shape parameter ## @var{a} and scale @var{b}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Quantile function of the Gamma distribution function inv = gaminv (x, a, b) if (nargin != 3) print_usage (); endif if (!isscalar (a) || !isscalar (b)) [retval, x, a, b] = common_size (x, a, b); if (retval > 0) error ("gaminv: X, A, and B must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (a) || iscomplex (b)) error ("gaminv: X, A, and B must not be complex"); endif if (isa (x, "single") || isa (a, "single") || isa (b, "single")) inv = zeros (size (x), "single"); else inv = zeros (size (x)); endif k = ((x < 0) | (x > 1) | isnan (x) | !(a > 0) | !(a < Inf) | !(b > 0) | !(b < Inf)); inv(k) = NaN; k = (x == 1) & (a > 0) & (a < Inf) & (b > 0) & (b < Inf); inv(k) = Inf; k = find ((x > 0) & (x < 1) & (a > 0) & (a < Inf) & (b > 0) & (b < Inf)); if (any (k)) if (!isscalar (a) || !isscalar (b)) a = a(k); b = b(k); y = a .* b; else y = a * b * ones (size (k)); endif x = x(k); if (isa (x, "single")) myeps = eps ("single"); else myeps = eps; endif l = find (x < myeps); if (any (l)) y(l) = sqrt (myeps) * ones (length (l), 1); endif y_old = y; for i = 1 : 100 h = (gamcdf (y_old, a, b) - x) ./ gampdf (y_old, a, b); y_new = y_old - h; ind = find (y_new <= myeps); if (any (ind)) y_new (ind) = y_old (ind) / 10; h = y_old - y_new; endif if (max (abs (h)) < sqrt (myeps)) break; endif y_old = y_new; endfor inv(k) = y_new; endif endfunction %!shared x %! x = [-1 0 0.63212055882855778 1 2]; %!assert (gaminv (x, ones (1,5), ones (1,5)), [NaN 0 1 Inf NaN], eps) %!assert (gaminv (x, 1, ones (1,5)), [NaN 0 1 Inf NaN], eps) %!assert (gaminv (x, ones (1,5), 1), [NaN 0 1 Inf NaN], eps) %!assert (gaminv (x, [1 -Inf NaN Inf 1], 1), [NaN NaN NaN NaN NaN]) %!assert (gaminv (x, 1, [1 -Inf NaN Inf 1]), [NaN NaN NaN NaN NaN]) %!assert (gaminv ([x(1:2) NaN x(4:5)], 1, 1), [NaN 0 NaN Inf NaN]) %% Test class of input preserved %!assert (gaminv ([x, NaN], 1, 1), [NaN 0 1 Inf NaN NaN], eps) %!assert (gaminv (single ([x, NaN]), 1, 1), single ([NaN 0 1 Inf NaN NaN]), eps ("single")) %!assert (gaminv ([x, NaN], single (1), 1), single ([NaN 0 1 Inf NaN NaN]), eps ("single")) %!assert (gaminv ([x, NaN], 1, single (1)), single ([NaN 0 1 Inf NaN NaN]), eps ("single")) %% Test input validation %!error gaminv () %!error gaminv (1) %!error gaminv (1,2) %!error gaminv (1,2,3,4) %!error gaminv (ones (3), ones (2), ones (2)) %!error gaminv (ones (2), ones (3), ones (2)) %!error gaminv (ones (2), ones (2), ones (3)) %!error gaminv (i, 2, 2) %!error gaminv (2, i, 2) %!error gaminv (2, 2, i)