Mercurial > hg > octave-nkf
view scripts/control/system/is_stabilizable.m @ 5965:290420f503b2
[project @ 2006-08-24 19:01:16 by jwe]
author | jwe |
---|---|
date | Thu, 24 Aug 2006 19:01:17 +0000 |
parents | 2618a0750ae6 |
children | 34f96dd5441b |
line wrap: on
line source
## Copyright (C) 1998 Kai P. Mueller. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{retval} =} is_stabilizable (@var{sys}, @var{tol}) ## @deftypefnx {Function File} {@var{retval} =} is_stabilizable (@var{a}, @var{b}, @var{tol}, @var{dflg}) ## Logical check for system stabilizability (i.e., all unstable modes are controllable). ## Returns 1 if the system is stabilizable, 0 if the the system is not stabilizable, -1 ## if the system has non stabilizable modes at the imaginary axis (unit circle for ## discrete-time systems. ## ## Test for stabilizability is performed via Hautus Lemma. If ## @iftex ## @tex ## @var{dflg}$\neq$0 ## @end tex ## @end iftex ## @ifinfo ## @var{dflg}!=0 ## @end ifinfo ## assume that discrete-time matrices (a,b) are supplied. ## @seealso{size, rows, columns, length, ismatrix, isscalar, isvector ## is_observable, is_stabilizable, is_detectable} ## @end deftypefn ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> ## Created: August 1993 ## Updated by A. S. Hodel (scotte@eng.auburn.edu) Aubust, 1995 to use krylovb ## Updated by John Ingram (ingraje@eng.auburn.edu) July, 1996 to accept systems function retval = is_stabilizable (a, b, tol, dflg) if(nargin < 1) usage("[retval,U] = is_stabilizable(a {, b ,tol, dflg})"); elseif(isstruct(a)) ## system passed. if(nargin == 2) tol = b; % get tolerance elseif(nargin > 2) usage("retval = is_stabilizable(sys{,tol})"); endif disc = is_digital(a); [a,b] = sys2ss(a); else ## a,b arguments sent directly. if ((nargin > 4)||(nargin == 1)) usage("retval = is_stabilizable(a {, b ,tol, dflg})"); endif if(exist("dflg")) disc = dflg; else disc = 0; end endif if(~exist("tol")) tol = 200*eps; end ## Checking dimensions n = is_square(a); if (n==0) error("is_stabilizable: a must be square"); end [nr,m] = size(b); if (nr!=n) error("is_stabilizable: (a,b) not conformal"); end ##Computing the eigenvalue of A L = eig(a); retval = 1; specflag = 0; for i=1:n if (disc==0) ## Continuous time case rL = real(L(i)); if (rL>=0) H = [eye(n)*L(i)-a, b]; f = (rank(H,tol)==n); if (f==0) retval = 0; if (rL==0) specflag = 1; end end end else ## Discrete time case rL = abs(L(i)); if (rL>=1) H = [eye(n)*L(i)-a, b]; f = (rank(H,tol)==n); if (f==0) retval = 0; if (rL==1) specflag = 1; end end end end end if (specflag==1) ## This means that the system has uncontrollable modes at the imaginary axis ## (or at the unit circle for discrete time systems) retval = -1; end