Mercurial > hg > octave-nkf
view scripts/general/cplxpair.m @ 5965:290420f503b2
[project @ 2006-08-24 19:01:16 by jwe]
author | jwe |
---|---|
date | Thu, 24 Aug 2006 19:01:17 +0000 |
parents | b0d4ff99a0c5 |
children | 34f96dd5441b |
line wrap: on
line source
## Copyright (C) 2000 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} cplxpair (@var{z}, @var{tol}, @var{dim}) ## Sort the numbers @var{z} into complex conjugate pairs ordered by ## increasing real part. With identical real parts, order by increasing ## imaginary magnitude. Place the negative imaginary complex number ## first within each pair. Place all the real numbers after all the ## complex pairs (those with @code{abs (imag (@var{z}) / @var{z}) < ## @var{tol})}, where the default value of @var{tol} is @code{100 * ## @var{eps}}. ## ## By default the complex pairs are sorted along the first non-singleton ## dimension of @var{z}. If @var{dim} is specified, then the complex ## pairs are sorted along this dimension. ## ## Signal an error if some complex numbers could not be paired. Requires ## all complex numbers to be exact conjugates within tol, or signals an ## error. Note that there are no guarantees on the order of the returned ## pairs with identical real parts but differing imaginary parts. ## ## @example ## cplxpair (exp(2i*pi*[0:4]'/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5) ## @end example ## @end deftypefn ## TODO: subsort returned pairs by imaginary magnitude ## TODO: Why doesn't exp(2i*pi*[0:4]'/5) produce exact conjugates. Does ## TODO: it in Matlab? The reason is that complex pairs are supposed ## TODO: to be exact conjugates, and not rely on a tolerance test. ## 2006-05-12 David Bateman - Modified for NDArrays function y = cplxpair (z, tol, dim) if nargin < 1 || nargin > 3 usage ("z = cplxpair (z, tol, dim);"); endif if (length (z) == 0) y = zeros (size (z)); return; endif if (nargin < 2 || isempty (tol)) tol = 100*eps; endif nd = ndims (z); orig_dims = size (z); if (nargin < 3) ## Find the first singleton dimension. dim = 0; while (dim < nd && orig_dims(dim+1) == 1) dim++; endwhile dim++; if (dim > nd) dim = 1; endif else dim = floor(dim); if (dim < 1 || dim > nd) error ("cplxpair: invalid dimension along which to sort"); endif endif ## Move dimension to treat first, and convert to a 2-D matrix perm = [dim:nd, 1:dim-1]; z = permute (z, perm); sz = size (z); n = sz (1); m = prod (sz) / n; z = reshape (z, n, m); ## Sort the sequence in terms of increasing real values [q, idx] = sort (real (z), 1); z = z(idx + n * ones (n, 1) * [0:m-1]); ## Put the purely real values at the end of the returned list [idxi, idxj] = find (abs (imag (z)) ./ (abs (z) + realmin) < tol ); q = sparse (idxi, idxj, 1, n, m); nr = sum (q, 1); [q, idx] = sort (q, 1); z = z(idx); y = z; ## For each remaining z, place the value and its conjugate at the ## start of the returned list, and remove them from further ## consideration. for j = 1:m p = n - nr(j); for i=1:2:p if (i+1 > p) error ("cplxpair could not pair all complex numbers"); endif [v, idx] = min (abs (z(i+1:p) - conj (z(i)))); if (v > tol) error ("cplxpair could not pair all complex numbers"); endif if (imag (z(i)) < 0) y([i, i+1]) = z([i, idx+i]); else y([i, i+1]) = z([idx+i, i]); endif z(idx+i) = z(i+1); endfor endfor ## Reshape the output matrix y = ipermute (reshape (y, sz), perm); endfunction %!demo %! [ cplxpair(exp(2i*pi*[0:4]'/5)), exp(2i*pi*[3; 2; 4; 1; 0]/5) ] %!assert (isempty(cplxpair([]))); %!assert (cplxpair(1), 1) %!assert (cplxpair([1+1i, 1-1i]), [1-1i, 1+1i]) %!assert (cplxpair([1+1i, 1+1i, 1, 1-1i, 1-1i, 2]), \ %! [1-1i, 1+1i, 1-1i, 1+1i, 1, 2]) %!assert (cplxpair([1+1i; 1+1i; 1; 1-1i; 1-1i; 2]), \ %! [1-1i; 1+1i; 1-1i; 1+1i; 1; 2]) %!assert (cplxpair([0, 1, 2]), [0, 1, 2]); %!shared z %! z=exp(2i*pi*[4; 3; 5; 2; 6; 1; 0]/7); %!assert (cplxpair(z(randperm(7))), z); %!assert (cplxpair(z(randperm(7))), z); %!assert (cplxpair(z(randperm(7))), z); %!assert (cplxpair([z(randperm(7)),z(randperm(7))]),[z,z]) %!assert (cplxpair([z(randperm(7)),z(randperm(7))],[],1),[z,z]) %!assert (cplxpair([z(randperm(7)).';z(randperm(7)).'],[],2),[z.';z.']) %!## tolerance test %!assert (cplxpair([1i, -1i, 1+(1i*eps)],2*eps), [-1i, 1i, 1+(1i*eps)]);