Mercurial > hg > octave-nkf
view scripts/general/gradient.m @ 5965:290420f503b2
[project @ 2006-08-24 19:01:16 by jwe]
author | jwe |
---|---|
date | Thu, 24 Aug 2006 19:01:17 +0000 |
parents | 376e02b2ce70 |
children | 8b0cfeb06365 |
line wrap: on
line source
## Copyright (C) 2000 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{x} = } gradient (@var{M}) ## @deftypefnx {Function File} {[@var{x}, @var{y}, @dots{}] = } gradient (@var{M}) ## @deftypefnx {Function File} {[@dots{}] = } gradient (@var{M}, @var{s}) ## @deftypefnx {Function File} {[@dots{}] = } gradient (@var{M}, @var{dx}, @var{dy}, @dots{}) ## ## Calculates the gradient. @code{@var{x} = gradient (@var{M})} ## calculates the one dimensional gradient if @var{M} is a vector. If ## @var{M} is a matrix the gradient is calculated for each row. ## ## @code{[@var{x}, @var{y}] = gradient (@var{M})} calculates the one ## dimensional gradient for each direction if @var{M} if @var{M} is a ## matrix. Additional return arguments can be use for multi-dimensional ## matrices. ## ## Spacing values between two points can be provided by the ## @var{dx}, @var{dy} or @var{h} parameters. If @var{h} is supplied it ## is assumed to be the spacing in all directions. Otherwise, seperate ## values of the spacing can be supplied by the @var{dx}, etc variables. ## A scalar value specifies an equidistant spacing, while a vector value ## can be used to specify a variable spacing. The length must match ## their respective dimension of @var{M}. ## ## At boundary points a linear extrapolation is applied. Interior points ## are calculated with the first approximation of the numerical gradient ## ## @example ## y'(i) = 1/(x(i+1)-x(i-1)) *(y(i-1)-y(i+1)). ## @end example ## ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Modified: David Bateman <dbateman@free.fr> Added NDArray support function [varargout] = gradient (M, varargin) if (nargin < 1) print_usage () endif transposed = false; if (isvector (M)) ## make a column vector transposed = (size (M, 2) == 1); M = M(:)'; endif nd = ndims (M); sz = size (M); if (nargin > 2 && nargin != nd + 1) print_usage () endif d = cell (1, nd); if (nargin == 1) for i=1:nd d{i} = ones (sz(i), 1); endfor elseif (nargin == 2) if (isscalar (varargin{1})) for i = 1:nd d{i} = varargin{1} * ones (sz(i), 1); endfor else for i = 1:nd d{i} = varargin{1}; endfor endif else for i=1:nd if (isscalar (varargin{1})) d{i} = varargin{i} * ones (sz(i), 1); else d{i} = varargin{i}; endif endfor ## Why the hell did matlab decide to swap these two values? tmp = d{1}; d{1} = d{2}; d{2} = tmp; endif for i = 1:max (2, min (nd, nargout)) mr = sz(i); mc = prod ([sz(1:i-1), sz(i+1:nd)]); Y = zeros (size (M), class (M)); if (mr > 1) ## top and bottom boundary Y(1,:) = diff (M(1:2,:)) / d{i}(1); Y(mr,:) = diff (M(mr-1:mr,:)) / d{i}(mr-1); endif if (mr > 2) ## interior points Y(2:mr-1,:) = (M(3:mr,:) .- M(1:mr-2,:)) ... ./ kron (d{i}(1:mr-2) .+ d{i}(2:mr-1), ones (1, mc)); endif varargout{i} = ipermute (Y, [i:nd,1:i-1]); M = permute (M, [2:nd,1]); endfor ## Why the hell did matlab decide to swap these two values? tmp = varargout{1}; varargout{1} = varargout{2}; varargout{2} = tmp; if (transposed) varargout{1} = varargout{1}.'; endif endfunction