Mercurial > hg > octave-nkf
view scripts/special-matrix/pascal.m @ 5965:290420f503b2
[project @ 2006-08-24 19:01:16 by jwe]
author | jwe |
---|---|
date | Thu, 24 Aug 2006 19:01:17 +0000 |
parents | 1fe78adb91bc |
children | 93c65f2a5668 |
line wrap: on
line source
## Copyright (C) 1999 Peter Ekberg ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} pascal (@var{n}, @var{t}) ## ## Return the Pascal matrix of order @var{n} if @code{@var{t} = 0}. ## @var{t} defaults to 0. Return lower triangular Cholesky factor of ## the Pascal matrix if @code{@var{t} = 1}. This matrix is its own ## inverse, that is @code{pascal (@var{n}, 1) ^ 2 == eye (@var{n})}. ## If @code{@var{t} = 2}, return a transposed and permuted version of ## @code{pascal (@var{n}, 1)}, which is the cube-root of the identity ## matrix. That is @code{pascal (@var{n}, 2) ^ 3 == eye (@var{n})}. ## ## @seealso{hankel, vander, sylvester_matrix, hilb, invhilb, toeplitz ## hadamard, wilkinson, compan, rosser} ## @end deftypefn ## Author: Peter Ekberg ## (peda) function retval = pascal (n, t) if (nargin > 2) || (nargin == 0) print_usage (); endif if (nargin == 1) t = 0; endif if (! is_scalar (n) || ! is_scalar (t)) error ("pascal: expecting scalar arguments, found something else"); endif retval = diag ((-1).^[0:n-1]); retval(:,1) = ones (n, 1); for j = 2:n-1 for i = j+1:n retval(i,j) = retval(i-1,j) - retval(i-1,j-1); endfor endfor if (t == 0) retval = retval*retval'; elseif (t == 2) retval = retval'; retval = retval(n:-1:1,:); retval(:,n) = -retval(:,n); retval(n,:) = -retval(n,:); if (rem(n,2) != 1) retval = -retval; endif endif endfunction