Mercurial > hg > octave-nkf
view scripts/sparse/bicgstab.m @ 20737:2d9ec16fa960
Print error, rather than aborting, if mex function mxIsFromGlobalWS is used (bug #46070).
* mex.cc (mxIsFromGlobalWS): Call mexErrMsgTxt rather than abort() in function.
author | Rik <rik@octave.org> |
---|---|
date | Tue, 29 Sep 2015 12:00:11 -0700 |
parents | 83792dd9bcc1 |
children |
line wrap: on
line source
## Copyright (C) 2008-2015 Radek Salac ## Copyright (C) 2012 Carlo de Falco ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{x} =} bicgstab (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0}) ## @deftypefnx {Function File} {@var{x} =} bicgstab (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{P}) ## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} bicgstab (@var{A}, @var{b}, @dots{}) ## Solve @code{A x = b} using the stabilizied Bi-conjugate gradient iterative ## method. ## ## @itemize @minus ## @item @var{rtol} is the relative tolerance, if not given or set to [] the ## default value 1e-6 is used. ## ## @item @var{maxit} the maximum number of outer iterations, if not given or ## set to [] the default value @code{min (20, numel (b))} is used. ## ## @item @var{x0} the initial guess, if not given or set to [] the default ## value @code{zeros (size (b))} is used. ## @end itemize ## ## @var{A} can be passed as a matrix or as a function handle or inline ## function @code{f} such that @code{f(x) = A*x}. ## ## The preconditioner @var{P} is given as @code{P = M1 * M2}. Both @var{M1} ## and @var{M2} can be passed as a matrix or as a function handle or inline ## function @code{g} such that @code{g(x) = M1 \ x} or @code{g(x) = M2 \ x}. ## ## If called with more than one output parameter ## ## @itemize @minus ## @item @var{flag} indicates the exit status: ## ## @itemize @minus ## @item 0: iteration converged to the within the chosen tolerance ## ## @item 1: the maximum number of iterations was reached before convergence ## ## @item 3: the algorithm reached stagnation ## @end itemize ## ## (the value 2 is unused but skipped for compatibility). ## ## @item @var{relres} is the final value of the relative residual. ## ## @item @var{iter} is the number of iterations performed. ## ## @item @var{resvec} is a vector containing the relative residual at each ## iteration. ## @end itemize ## ## @seealso{bicg, cgs, gmres, pcg, qmr} ## ## @end deftypefn function [x, flag, relres, iter, resvec] = bicgstab (A, b, tol, maxit, M1, M2, x0) if (nargin >= 2 && nargin <= 7 && isvector (full (b))) if (ischar (A)) A = str2func (A); elseif (isnumeric(A) && ismatrix (A)) Ax = @(x) A * x; elseif (isa (A, "function_handle")) Ax = @(x) feval (A, x); else error (["bicgstab: first argument is expected " ... "to be a function or a square matrix"]); endif if (nargin < 3 || isempty (tol)) tol = 1e-6; endif if (nargin < 4 || isempty (maxit)) maxit = min (rows (b), 20); endif if (nargin < 5 || isempty (M1)) M1m1x = @(x) x; elseif (ischar (M1)) M1m1x = str2func (M1); elseif (isnumeric(M1) && ismatrix (M1)) M1m1x = @(x) M1 \ x; elseif (isa (M1, "function_handle")) M1m1x = @(x) feval (M1, x); else error (["bicgstab: preconditioner is " ... "expected to be a function or matrix"]); endif if (nargin < 6 || isempty (M2)) M2m1x = @(x) x; elseif (ischar (M2)) M2m1x = str2func (M2); elseif (isnumeric(M2) && ismatrix (M2)) M2m1x = @(x) M2 \ x; elseif (isa (M2, "function_handle")) M2m1x = @(x) feval (M2, x); else error (["bicgstab: preconditioner is "... "expected to be a function or matrix"]); endif precon = @(x) M2m1x (M1m1x (x)); if (nargin < 7 || isempty (x0)) x0 = zeros (size (b)); endif ## specifies initial estimate x0 if (nargin < 7) x = zeros (rows (b), 1); else x = x0; endif norm_b = norm (b); res = b - Ax (x); rr = res; ## Vector of the residual norms for each iteration. resvec = norm (res) / norm_b; ## Default behaviour we don't reach tolerance tol within maxit iterations. flag = 1; for iter = 1:maxit rho_1 = rr' * res; if (iter == 1) p = res; else beta = (rho_1 / rho_2) * (alpha / omega); p = res + beta * (p - omega * v); endif phat = precon (p); v = Ax (phat); alpha = rho_1 / (rr' * v); s = res - alpha * v; shat = precon (s); t = Ax (shat); omega = (s' * t) / (t' * t); x += alpha * phat + omega * shat; res = s - omega * t; rho_2 = rho_1; relres = norm (res) / norm_b; resvec = [resvec; relres]; if (relres <= tol) ## We reach tolerance tol within maxit iterations. flag = 0; break; elseif (resvec(end) == resvec(end - 1)) ## The method stagnates. flag = 3; break; endif endfor if (nargout < 2) if (flag == 0) printf ("bicgstab converged at iteration %i ", iter); printf ("to a solution with relative residual %e\n", relres); elseif (flag == 3) printf ("bicgstab stopped at iteration %i ", iter); printf ("without converging to the desired tolerance %e\n", tol); printf ("because the method stagnated.\n"); printf ("The iterate returned (number %i) ", iter); printf ("has relative residual %e\n", relres); else printf ("bicgstab stopped at iteration %i ", iter); printf ("without converging to the desired toleranc %e\n", tol); printf ("because the maximum number of iterations was reached.\n"); printf ("The iterate returned (number %i) ", iter); printf ("has relative residual %e\n", relres); endif endif else print_usage (); endif endfunction %!demo %! % Solve system of A*x=b %! A = [5 -1 3;-1 2 -2;3 -2 3]; %! b = [7;-1;4]; %! [x, flag, relres, iter, resvec] = bicgstab (A, b) %!shared A, b, n, M1, M2 %! %!test %! n = 100; %! A = spdiags ([-2*ones(n,1) 4*ones(n,1) -ones(n,1)], -1:1, n, n); %! b = sum (A, 2); %! tol = 1e-8; %! maxit = 15; %! M1 = spdiags ([ones(n,1)/(-2) ones(n,1)],-1:0, n, n); %! M2 = spdiags ([4*ones(n,1) -ones(n,1)], 0:1, n, n); %! [x, flag, relres, iter, resvec] = bicgstab (A, b, tol, maxit, M1, M2); %! assert (x, ones (size (b)), 1e-7); %! %!test %!function y = afun (x, a) %! y = a * x; %!endfunction %! %! tol = 1e-8; %! maxit = 15; %! %! [x, flag, relres, iter, resvec] = bicgstab (@(x) afun (x, A), b, %! tol, maxit, M1, M2); %! assert (x, ones (size (b)), 1e-7); %!test %! n = 100; %! tol = 1e-8; %! a = sprand (n, n, .1); %! A = a'*a + 100 * eye (n); %! b = sum (A, 2); %! [x, flag, relres, iter, resvec] = bicgstab (A, b, tol, [], diag (diag (A))); %! assert (x, ones (size (b)), 1e-7); %!test %! A = [1 + 1i, 1 + 1i; 2 - 1i, 2 + 1i]; %! b = A * [1; 1]; %! [x, flag, relres, iter, resvec] = bicgstab (A, b); %! assert (x, [1; 1], 1e-6);